In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties. The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103-106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.

Response of notched graphite/peek and graphite/epoxy laminates subjected to tension fatigue loading

AYMERICH, FRANCESCO;
2000-01-01

Abstract

In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties. The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103-106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/2129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact