Temperature-accelerated tight-binding molecular dynamics simulations show that self-interstitial clusters formed from two and three defects are mobile species. In particular, the di-interstitial (I2) cluster is found to diffuse nearly as fast as the single self-interstitial (dumbbell) over a wide temperature range. In particular, at room temperature I2 is found to diffuse at a rate similar to the dumbbell, thus making an important contribution to silicon self-diffusion at temperatures relevant for silicon bulk processing. The simulations also reveal the atomistic mechanisms responsible for the defects’ mobility, showing that the I2 cluster must be promoted to a metastable state in which it executes several diffusive events before decaying to a new ground-state configuration equivalent to the initial one.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Diffusion of small self-interstitial clusters in silicon: Temperature-accelerated tight-binding molecular dynamics simulations |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | Temperature-accelerated tight-binding molecular dynamics simulations show that self-interstitial clusters formed from two and three defects are mobile species. In particular, the di-interstitial (I2) cluster is found to diffuse nearly as fast as the single self-interstitial (dumbbell) over a wide temperature range. In particular, at room temperature I2 is found to diffuse at a rate similar to the dumbbell, thus making an important contribution to silicon self-diffusion at temperatures relevant for silicon bulk processing. The simulations also reveal the atomistic mechanisms responsible for the defects’ mobility, showing that the I2 cluster must be promoted to a metastable state in which it executes several diffusive events before decaying to a new ground-state configuration equivalent to the initial one. |
Handle: | http://hdl.handle.net/11584/21301 |
Tipologia: | 1.1 Articolo in rivista |