Three main results concerning the infinity-Laplacian are proved. Theorem 1.1 shows that some overdetermined problems associated to an inhomogeneous infinity-Laplace equation are solvable only if the domain is a ball centered at the origin: this is the reason why we speak of constrained radial symmetry. Theorem 1.2 deals with a Dirichlet problem for infinity-harmonic functions in a domain possessing a spherical cavity. The result shows that under suitable control on the boundary data the unknown part of the boundary is relatively close to a sphere. Finally, Theorem 1.4 gives boundary conditions implying that the unknown part of the boundary is exactly a sphere concentric to the cavity. Incidentally, a boundary-point lemma of Hopf's type for the inhomogeneous infinity-Laplace equation is obtained.
Constrained radial symmetry for the infinity-Laplacian
GRECO, ANTONIO
2017-01-01
Abstract
Three main results concerning the infinity-Laplacian are proved. Theorem 1.1 shows that some overdetermined problems associated to an inhomogeneous infinity-Laplace equation are solvable only if the domain is a ball centered at the origin: this is the reason why we speak of constrained radial symmetry. Theorem 1.2 deals with a Dirichlet problem for infinity-harmonic functions in a domain possessing a spherical cavity. The result shows that under suitable control on the boundary data the unknown part of the boundary is relatively close to a sphere. Finally, Theorem 1.4 gives boundary conditions implying that the unknown part of the boundary is exactly a sphere concentric to the cavity. Incidentally, a boundary-point lemma of Hopf's type for the inhomogeneous infinity-Laplace equation is obtained.File | Dimensione | Formato | |
---|---|---|---|
bozze infinito-laplaciano.pdf
Solo gestori archivio
Descrizione: Bozze dell'articolo accettato per la pubblicazione
Tipologia:
versione post-print (AAM)
Dimensione
482.06 kB
Formato
Adobe PDF
|
482.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.