The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L-1 d-1), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms.

Effect of temperature on selenium removal from wastewater by UASB reactors

DESSÌ, PAOLO;CARUCCI, ALESSANDRA;
2016-01-01

Abstract

The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L-1 d-1), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms.
2016
Nitrate; Selenate; Selenium nanoparticles; Thermophilic; UASB; Anaerobiosis; Nitrates; Selenic Acid; Selenium; Sewage; Waste Water; Water Pollutants, Chemical; Bioreactors; Temperature; Waste Disposal, Fluid; Water Science and Technology; Waste Management and Disposal; Pollution; Ecological Modeling
File in questo prodotto:
File Dimensione Formato  
Dessì et al_Water Research 94_2016.pdf

Solo gestori archivio

Descrizione: articolo
Tipologia: versione editoriale (VoR)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Revised paper_post-print.pdf

Open Access dal 09/02/2018

Descrizione: Articolo principale dopo revisioni
Tipologia: versione post-print (AAM)
Dimensione 6.51 MB
Formato Adobe PDF
6.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/213340
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 63
social impact