Heat conduction in 2D materials can be effectively engineered by means of controlling nanoscale grain structure. Afavorable thermal performance makes these structures excellent candidates for integrated heat management units. Here we show combined experimental and theoretical studies for MoS2 nanosheets in a nanoscale grain-size limit.Wereport thermal conductivity measurements on 5 nm thick polycrystalline MoS2 by means of 2-laser Raman thermometry. The free-standing, drum-like MoS2 nanomembranes were fabricated using a novel polymer- and residue-free, wet transfer, in which we took advantage of the difference in the surface energies between MoS2 and the growth substrate to transfer the CVD-grown nanosheets. The measurements revealed a strong reduction in the in-plane thermal conductivity down to about 0.73 ± 0.25 W m-1 K-1. The results are discussed theoretically using finite elements method simulations for a polycrystalline film, and a scaling trend of the thermally conductivity with grain size is proposed.

Thermal conductivity of MoS2 polycrystalline nanomembranes

COLOMBO, LUCIANO;
2016-01-01

Abstract

Heat conduction in 2D materials can be effectively engineered by means of controlling nanoscale grain structure. Afavorable thermal performance makes these structures excellent candidates for integrated heat management units. Here we show combined experimental and theoretical studies for MoS2 nanosheets in a nanoscale grain-size limit.Wereport thermal conductivity measurements on 5 nm thick polycrystalline MoS2 by means of 2-laser Raman thermometry. The free-standing, drum-like MoS2 nanomembranes were fabricated using a novel polymer- and residue-free, wet transfer, in which we took advantage of the difference in the surface energies between MoS2 and the growth substrate to transfer the CVD-grown nanosheets. The measurements revealed a strong reduction in the in-plane thermal conductivity down to about 0.73 ± 0.25 W m-1 K-1. The results are discussed theoretically using finite elements method simulations for a polycrystalline film, and a scaling trend of the thermally conductivity with grain size is proposed.
2016
MoS2; Nanoscale thermal transport; Thermal conductivity; Ultra-thin membranes; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
2D MATERIALS -Thermal conductivity of MoS2 polycrystalline nanomembranes.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/213949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 37
social impact