Tikhonov regularization is commonly used for the solution of linear discrete ill-posed problems with error-contaminated data. A regularization parameter that determines the quality of the computed solution has to be chosen. One of the most popular approaches to choosing this parameter is to minimize the Generalized Cross Validation (GCV) function. The minimum can be determined quite inexpensively when the matrix A that defines the linear discrete ill-posed problem is small enough to rapidly compute its singular value decomposition (SVD). We are interested in the solution of linear discrete ill-posed problems with a matrix A that is too large to make the computation of its complete SVD feasible, and show how upper and lower bounds for the numerator and denominator of the GCV function can be determined fairly inexpensively for large matrices A by computing only a few of the largest singular values and associated singular vectors of A. These bounds are used to determine a suitable value of the regularization parameter. Computed examples illustrate the performance of the proposed method.
GCV for Tikhonov regularization by partial SVD
FENU, CATERINA;RODRIGUEZ, GIUSEPPE;
2017-01-01
Abstract
Tikhonov regularization is commonly used for the solution of linear discrete ill-posed problems with error-contaminated data. A regularization parameter that determines the quality of the computed solution has to be chosen. One of the most popular approaches to choosing this parameter is to minimize the Generalized Cross Validation (GCV) function. The minimum can be determined quite inexpensively when the matrix A that defines the linear discrete ill-posed problem is small enough to rapidly compute its singular value decomposition (SVD). We are interested in the solution of linear discrete ill-posed problems with a matrix A that is too large to make the computation of its complete SVD feasible, and show how upper and lower bounds for the numerator and denominator of the GCV function can be determined fairly inexpensively for large matrices A by computing only a few of the largest singular values and associated singular vectors of A. These bounds are used to determine a suitable value of the regularization parameter. Computed examples illustrate the performance of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
gcvpsvd17.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
814.59 kB
Formato
Adobe PDF
|
814.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.