n some problems of practical interest, a standard Bayesian analysis can be difficult to perform. This is true, for example, when the class of sampling parametric models is unknown or if robustness with respect to data or to model misspecifications is required. These situations can be usefully handled by using a posterior distribution for the parameter of interest which is based on a pseudo-likelihood function derived from estimating equations, i.e. on a quasi-likelihood, and on a suitable prior distribution. The aim of this paper is to propose and discuss the construction of a default prior distribution for a scalar parameter of interest to be used together with a quasi- likelihood function. We show that the proposed default prior can be interpreted as a Jeffreys-type prior, since it is proportional to the square-root of the expected information derived from the quasi-likelihood. The frequentist coverage of the credible regions, based on the proposed procedure, is studied through Monte Carlo simulations in the context of robustness theory and of generalized linear models with over- dispersion.

Default prior distributions from quasi- and quasi-profile likelihoods

CABRAS, STEFANO;RACUGNO, WALTER
2010

Abstract

n some problems of practical interest, a standard Bayesian analysis can be difficult to perform. This is true, for example, when the class of sampling parametric models is unknown or if robustness with respect to data or to model misspecifications is required. These situations can be usefully handled by using a posterior distribution for the parameter of interest which is based on a pseudo-likelihood function derived from estimating equations, i.e. on a quasi-likelihood, and on a suitable prior distribution. The aim of this paper is to propose and discuss the construction of a default prior distribution for a scalar parameter of interest to be used together with a quasi- likelihood function. We show that the proposed default prior can be interpreted as a Jeffreys-type prior, since it is proportional to the square-root of the expected information derived from the quasi-likelihood. The frequentist coverage of the credible regions, based on the proposed procedure, is studied through Monte Carlo simulations in the context of robustness theory and of generalized linear models with over- dispersion.
Estimating equation, Jeffreys’ prior, Matching prior, Nuisance parameter, Pseudo-likelihood, Robustness
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/21737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact