We prove that any contact metric (κ, μ)-space (M, φ, ξ, η, g) admits a canonical paracontact metric structure that is compatible with the contact form η. We study this canonical paracontact structure, proving that it satisfies a nullity condition and induces on the underlying contact manifold (M, η) a sequence of compatible contact and paracontact metric structures satisfying nullity conditions. We then study the behavior of that sequence, which is related to the Boeckx invariant IM and to the bi-Legendrian structure of (M, φ, ξ, η, g). Finally we are able to define a canonical Sasakian structure on any contact metric (κ, μ)-space whose Boeckx invariant satisfies |IM|>1.

Geometric structures associated to a contact metric (k,μ)-space

CAPPELLETTI MONTANO, BENIAMINO;
2010

Abstract

We prove that any contact metric (κ, μ)-space (M, φ, ξ, η, g) admits a canonical paracontact metric structure that is compatible with the contact form η. We study this canonical paracontact structure, proving that it satisfies a nullity condition and induces on the underlying contact manifold (M, η) a sequence of compatible contact and paracontact metric structures satisfying nullity conditions. We then study the behavior of that sequence, which is related to the Boeckx invariant IM and to the bi-Legendrian structure of (M, φ, ξ, η, g). Finally we are able to define a canonical Sasakian structure on any contact metric (κ, μ)-space whose Boeckx invariant satisfies |IM|>1.
File in questo prodotto:
File Dimensione Formato  
pjm.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 427.4 kB
Formato Adobe PDF
427.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/21810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact