The understanding of the phenomena involved in ventricular flow is becoming more and more important because of two main reasons: the continuous improvements in the field of diagnostic techniques and the increasing popularity of prosthetic devices. On one hand, more accurate investigation techniques gives the chance to better diagnose diseases before they become dangerous to the health of the patient. On the other hand, the diffusion of prosthetic devices requires very detailed assessment of the modifications that they introduce in the functioning of the heart. The present work is focussed on the experimental investigation of the flow in the left ventricle of the human heart with the presence of a tilting-disk valve in the mitral position, as this kind of valve is known to change deeply the structure of such a flow. A laboratory model has been built up, which consists of a cavity able to change its volume, representing the ventricle, on which two prosthetic valves are mounted. The facility is designed to be able to reproduce any arbitrarily assigned law of variation of the ventricular volume with time. In the present experiment, a physiologically shaped curve has been used. Velocity was measured using a feature-tracking (FT) algorithm; as a consequence, the particle trajectories are known. The flow has been studied by changing both the beat rate and the stroke volume. The flow was studied both kinematically, examining velocity and vorticity fields, and dynamically, evaluating turbulent and viscous shear stresses, and inertial forces exerted on fluid elements. The analysis of the results allows the identification of the main features of the ventricular flow, generated by a mitral, tilting-disk valve, during the whole cardiac cycle and its dependence on the frequency and the stroke volume.

A laboratory investigation of the flow in the left ventricle of the human heart with prosthetic, tilting-disk valves

QUERZOLI, GIORGIO
2005

Abstract

The understanding of the phenomena involved in ventricular flow is becoming more and more important because of two main reasons: the continuous improvements in the field of diagnostic techniques and the increasing popularity of prosthetic devices. On one hand, more accurate investigation techniques gives the chance to better diagnose diseases before they become dangerous to the health of the patient. On the other hand, the diffusion of prosthetic devices requires very detailed assessment of the modifications that they introduce in the functioning of the heart. The present work is focussed on the experimental investigation of the flow in the left ventricle of the human heart with the presence of a tilting-disk valve in the mitral position, as this kind of valve is known to change deeply the structure of such a flow. A laboratory model has been built up, which consists of a cavity able to change its volume, representing the ventricle, on which two prosthetic valves are mounted. The facility is designed to be able to reproduce any arbitrarily assigned law of variation of the ventricular volume with time. In the present experiment, a physiologically shaped curve has been used. Velocity was measured using a feature-tracking (FT) algorithm; as a consequence, the particle trajectories are known. The flow has been studied by changing both the beat rate and the stroke volume. The flow was studied both kinematically, examining velocity and vorticity fields, and dynamically, evaluating turbulent and viscous shear stresses, and inertial forces exerted on fluid elements. The analysis of the results allows the identification of the main features of the ventricular flow, generated by a mitral, tilting-disk valve, during the whole cardiac cycle and its dependence on the frequency and the stroke volume.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/21869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 43
social impact