Let Φ be a strictly plurisubharmonic and radial function on the unit disk D ⊂ C and let g be the Kähler metric associated to the Kähler form ω. We prove that if g is g_eucl -balanced of height 3 (where g_eucl is the standard Euclidean metric on C = R^2 ), and the function h(x) = exp(−Φ(z)), x = |z|^2, extends to an entire analytic function on R, then g equals the hyperbolic metric. The proof of our result is based on a interesting characterization of the function f(x) = 1 − x.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Radial balanced metrics on the unit disk | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Rivista: | ||
Abstract: | Let Φ be a strictly plurisubharmonic and radial function on the unit disk D ⊂ C and let g be the Kähler metric associated to the Kähler form ω. We prove that if g is g_eucl -balanced of height 3 (where g_eucl is the standard Euclidean metric on C = R^2 ), and the function h(x) = exp(−Φ(z)), x = |z|^2, extends to an entire analytic function on R, then g equals the hyperbolic metric. The proof of our result is based on a interesting characterization of the function f(x) = 1 − x. | |
Handle: | http://hdl.handle.net/11584/21933 | |
Tipologia: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.