Let Φ be a strictly plurisubharmonic and radial function on the unit disk D ⊂ C and let g be the Kähler metric associated to the Kähler form ω. We prove that if g is g_eucl -balanced of height 3 (where g_eucl is the standard Euclidean metric on C = R^2 ), and the function h(x) = exp(−Φ(z)), x = |z|^2, extends to an entire analytic function on R, then g equals the hyperbolic metric. The proof of our result is based on a interesting characterization of the function f(x) = 1 − x.

Radial balanced metrics on the unit disk

GRECO, ANTONIO;LOI, ANDREA
2010

Abstract

Let Φ be a strictly plurisubharmonic and radial function on the unit disk D ⊂ C and let g be the Kähler metric associated to the Kähler form ω. We prove that if g is g_eucl -balanced of height 3 (where g_eucl is the standard Euclidean metric on C = R^2 ), and the function h(x) = exp(−Φ(z)), x = |z|^2, extends to an entire analytic function on R, then g equals the hyperbolic metric. The proof of our result is based on a interesting characterization of the function f(x) = 1 − x.
Kaehler metrics; Balanced metrics; Quantization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/21933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact