Abstract: In the last years considerable research and development activity have been expended to find new ceramic bone substitutes for the treatment of bone defects. However in many cases the drawback of synthethic bone substitutes are the slow graft incorporation and remodelling into the host bone. The purpose of this study was to analyze the kinetics of resorption and new bone formation of new calcium sulfate (CaSO4)/calcium phosphate (CaPO4) bioceramic engineered to enhance its bone forming properties. We prospectively evaluated the results of a series of 15 hips with osteonecrosis of the femoral head (ONFH) treated at with core decompression and injection of the CaSO4/CaPO4 composite. In all hips, a quantitative computed tomography (QTC) scan was taken within one week after the surgery, at 12 months, 2 years and finally with a minimum of 4 years follow-up. The mean HU in the immediate post-operative period was 1445 (Range 1388–1602); At one year the mean HU strongly decrease at 556.6 HU (P < 0.01); The mean HU at 2 years follow-up further decreased to 475.1. The mean HU at 4 years was unchanged. The quantitative and qualitative CT scan data of this series indicates that the CaSO4-CaPO4 ceramic composite resorbs over a narrow timeframe and the gradual resorption of the graft within the defect provides an ideal environment for the direct new bone growth that propagates across the defect. Graphical Abstract: [InlineMediaObject not available: see fulltext.].

The kinetics of remodeling of a calcium sulfate/calcium phosphate bioceramic

CAPONE, ANTONIO;
2017-01-01

Abstract

Abstract: In the last years considerable research and development activity have been expended to find new ceramic bone substitutes for the treatment of bone defects. However in many cases the drawback of synthethic bone substitutes are the slow graft incorporation and remodelling into the host bone. The purpose of this study was to analyze the kinetics of resorption and new bone formation of new calcium sulfate (CaSO4)/calcium phosphate (CaPO4) bioceramic engineered to enhance its bone forming properties. We prospectively evaluated the results of a series of 15 hips with osteonecrosis of the femoral head (ONFH) treated at with core decompression and injection of the CaSO4/CaPO4 composite. In all hips, a quantitative computed tomography (QTC) scan was taken within one week after the surgery, at 12 months, 2 years and finally with a minimum of 4 years follow-up. The mean HU in the immediate post-operative period was 1445 (Range 1388–1602); At one year the mean HU strongly decrease at 556.6 HU (P < 0.01); The mean HU at 2 years follow-up further decreased to 475.1. The mean HU at 4 years was unchanged. The quantitative and qualitative CT scan data of this series indicates that the CaSO4-CaPO4 ceramic composite resorbs over a narrow timeframe and the gradual resorption of the graft within the defect provides an ideal environment for the direct new bone growth that propagates across the defect. Graphical Abstract: [InlineMediaObject not available: see fulltext.].
2017
bioengineering; biophysics; biomaterials; biomedical engineering
File in questo prodotto:
File Dimensione Formato  
civinini2017.pdf

Solo gestori archivio

Dimensione 559.12 kB
Formato Adobe PDF
559.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/220508
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact