We investigate the functional (Formula presented.) where (Formula presented.) runs through the set of compact domains of fixed volume (Formula presented.) in any Riemannian manifold (Formula presented.) and where (Formula presented.) is the mean exit time from (Formula presented.) of the Brownian motion. We give an alternative analytical proof of a well-known fact on its critical points proved by McDonald: the critical points of (Formula presented.) are harmonic domains.

A short note on the mean exit time of the Brownian motion

CADEDDU, LUCIO;FARINA, MARIA ANTONIETTA
2017-01-01

Abstract

We investigate the functional (Formula presented.) where (Formula presented.) runs through the set of compact domains of fixed volume (Formula presented.) in any Riemannian manifold (Formula presented.) and where (Formula presented.) is the mean exit time from (Formula presented.) of the Brownian motion. We give an alternative analytical proof of a well-known fact on its critical points proved by McDonald: the critical points of (Formula presented.) are harmonic domains.
2017
Brownian motion; Critical points; harmonic domains; mean exit time; Physics and Astronomy (miscellaneous)
File in questo prodotto:
File Dimensione Formato  
punticritici_definitivo2017.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 175.84 kB
Formato Adobe PDF
175.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/220536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact