Motor and cognitive disabilities are related to brain atrophy in multiple sclerosis (MS). ‘Timed up and go’ (TUG) has been recently tested in MS as functional mobility test, as it is able to evaluate ambulation/coordination-related tasks, as well as cognitive function related to mobility. The objective of this study is to evaluate the relationship between brain volumes and TUG performances. Inclusion criteria were a diagnosis of MS and the ability to walk at least 20 m. TUG was performed using a wearable inertial sensor. Times and velocities of TUG sub-phases were calculated by processing trunk acceleration data. Patients underwent to a brain MRI, and volumes of whole brain, white matter (WM), grey matter (GM), and cortical GM (C) were estimated with SIENAX. Sixty patients were enrolled. Mean age was 41.5 ± 11.6 years and mean EDSS 2.3 ± 1.2. Total TUG duration was correlated to lower WM (ρ = 0.358, p = 0.005) and GM (ρ = 0.309, p = 0.017) volumes. A stronger association with lower GM volume was observed for intermediate (ρ = 0.427, p = 0.001) and final turning (ρ = 0.390, p = 0.002). TUG is a useful tool in a clinical setting as it can not only evaluate patients’ disability in terms of impaired functional mobility, but also estimate pathological features, such as grey atrophy.

‘Timed up and go’ and brain atrophy: a preliminary MRI study to assess functional mobility performance in multiple sclerosis

LOREFICE, LORENA;COGHE, GIANCARLO;FENU, GIUSEPPE;PORTA, MICAELA;PILLONI, GIUSEPPINA;FRAU, JESSICA;CORONA, FEDERICA;SECHI, VITTORIA;PAU, MASSIMILIANO;COCCO, ELEONORA
2017-01-01

Abstract

Motor and cognitive disabilities are related to brain atrophy in multiple sclerosis (MS). ‘Timed up and go’ (TUG) has been recently tested in MS as functional mobility test, as it is able to evaluate ambulation/coordination-related tasks, as well as cognitive function related to mobility. The objective of this study is to evaluate the relationship between brain volumes and TUG performances. Inclusion criteria were a diagnosis of MS and the ability to walk at least 20 m. TUG was performed using a wearable inertial sensor. Times and velocities of TUG sub-phases were calculated by processing trunk acceleration data. Patients underwent to a brain MRI, and volumes of whole brain, white matter (WM), grey matter (GM), and cortical GM (C) were estimated with SIENAX. Sixty patients were enrolled. Mean age was 41.5 ± 11.6 years and mean EDSS 2.3 ± 1.2. Total TUG duration was correlated to lower WM (ρ = 0.358, p = 0.005) and GM (ρ = 0.309, p = 0.017) volumes. A stronger association with lower GM volume was observed for intermediate (ρ = 0.427, p = 0.001) and final turning (ρ = 0.390, p = 0.002). TUG is a useful tool in a clinical setting as it can not only evaluate patients’ disability in terms of impaired functional mobility, but also estimate pathological features, such as grey atrophy.
2017
Brain Atrophy; Mobility impairment; Multiple Sclerosis; Timed up and go;
Brain Atrophy; Mobility impairment; Multiple Sclerosis; Timed up and go
File in questo prodotto:
File Dimensione Formato  
jon_2017.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 359.71 kB
Formato Adobe PDF
359.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/221050
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact