We investigate the eigenvalues of the Laplace operator in the space of functions of mean zero and having a constant (unprescribed) boundary value. The first eigenvalue of such problem lies between the first two eigenvalues of the Laplacian with homogeneous Dirichlet boundary conditions and satisfies an isoperimetric inequality: in the class of open bounded sets of prescribed measure, it becomes minimal for the union of two disjoint balls having the same radius. Existence of an optimal domain in the class of convex sets is also discussed.

Laplacian eigenvalues for mean zero functions with constant Dirichlet data

GRECO, ANTONIO;
2008

Abstract

We investigate the eigenvalues of the Laplace operator in the space of functions of mean zero and having a constant (unprescribed) boundary value. The first eigenvalue of such problem lies between the first two eigenvalues of the Laplacian with homogeneous Dirichlet boundary conditions and satisfies an isoperimetric inequality: in the class of open bounded sets of prescribed measure, it becomes minimal for the union of two disjoint balls having the same radius. Existence of an optimal domain in the class of convex sets is also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/22336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact