Elemental sulfur shows a superconducting phase at high pressure (above 100 GPa), with critical temperatures that rise up to 20 K [Phys. Rev. B 65, 064504 (2002)PRBMDO0163-182910.1103/PhysRevB.65.064504; Nature (London) 525, 73 (2015)NATUAS0028-083610.1038/nature14964] and presenting a jump at about 160 GPa, close to a structural phase transition to the β-Po phase. In this work we present a theoretical and fully ab initio characterization of sulfur based on superconducting density functional theory (SCDFT), focusing in the pressure range from 100 to 200 GPa. Calculations result in very good agreement with available experiments and point out that the origin of the critical temperature discontinuity is not related to the structural phase transition but induced by an electronic Lifshitz transition. This brings a strongly (interband) coupled electron pocket available for the superconducting condensation.

Origin of the critical temperature discontinuity in superconducting sulfur under high pressure

Monni, M.;BERNARDINI, FABIO;Massidda, S.
2017-01-01

Abstract

Elemental sulfur shows a superconducting phase at high pressure (above 100 GPa), with critical temperatures that rise up to 20 K [Phys. Rev. B 65, 064504 (2002)PRBMDO0163-182910.1103/PhysRevB.65.064504; Nature (London) 525, 73 (2015)NATUAS0028-083610.1038/nature14964] and presenting a jump at about 160 GPa, close to a structural phase transition to the β-Po phase. In this work we present a theoretical and fully ab initio characterization of sulfur based on superconducting density functional theory (SCDFT), focusing in the pressure range from 100 to 200 GPa. Calculations result in very good agreement with available experiments and point out that the origin of the critical temperature discontinuity is not related to the structural phase transition but induced by an electronic Lifshitz transition. This brings a strongly (interband) coupled electron pocket available for the superconducting condensation.
2017
condensed matter physics
File in questo prodotto:
File Dimensione Formato  
Sulfur-PhysRevB.95.064516.pdf

Solo gestori archivio

Descrizione: PDF editoriale
Tipologia: versione editoriale (VoR)
Dimensione 970.78 kB
Formato Adobe PDF
970.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/224358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact