The emergence and spread of multidrug-resistant (MDR) Mycobacterium tuberculosis (MT) represents a worldwide health care problem because of the difficulty in treating these infections. Development of drug resistance in MT arises mainly by mutation of chromosomal genes. To investigate the evolution of a MT population during a long-lasting infection, the phenotypic and genotypic changes in the drug resistance of 10 sequential MT isolates from a noncompliant chronically infected patient were investigated. During more than 12 years of active disease, a MDR population developed; molecular typing showed one single parental strain that infected the patient and persisted throughout the disease. Molecular analysis of the drug resistancerelated genes revealed that discrete subpopulations evolved over time from the parental strain by acquiring and accumulating resistance-conferring mutations to isoniazid, rifampin, and streptomycin. Overall, these observations indicate that during a chronic infection, several subpopulations may coexist in the same patient with different drug susceptibility profiles.

Drug Resistance Evolution of a Mycobacterium tuberculosis Strain from a Non-Compliant Patient

ORRU, GERMANO;
2005

Abstract

The emergence and spread of multidrug-resistant (MDR) Mycobacterium tuberculosis (MT) represents a worldwide health care problem because of the difficulty in treating these infections. Development of drug resistance in MT arises mainly by mutation of chromosomal genes. To investigate the evolution of a MT population during a long-lasting infection, the phenotypic and genotypic changes in the drug resistance of 10 sequential MT isolates from a noncompliant chronically infected patient were investigated. During more than 12 years of active disease, a MDR population developed; molecular typing showed one single parental strain that infected the patient and persisted throughout the disease. Molecular analysis of the drug resistancerelated genes revealed that discrete subpopulations evolved over time from the parental strain by acquiring and accumulating resistance-conferring mutations to isoniazid, rifampin, and streptomycin. Overall, these observations indicate that during a chronic infection, several subpopulations may coexist in the same patient with different drug susceptibility profiles.
Mycobacterium tuberculosis; Drug Resistance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/22507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact