Software development -just like any other human collaboration - inevitably evokes emotions like joy or sadness, which are known to affect the group dynamics within a team. Today, little is known about those individual emotions and whether they can be discerned at all in the development artifacts produced during a project. This paper analyzes (a) whether issue reportsâa common development artifact, rich in contentâconvey emotional information and (b) whether humans agree on the presence of these emotions. From the analysis of the issue comments of 117 projects of the Apache Software Foundation, we find that developers express emotions (in particular gratitude, joy and sadness). However, the more context is provided about an issue report, the more human raters start to doubt and nuance their interpretation. Based on these results, we demonstrate the feasibility of a machine learning classifier for identifying issue comments containing gratitude, joy and sadness. Such a classifier, using emotion-driving words and technical terms, obtains a good precision and recall for identifying the emotion love, while for joy and sadness a lower recall is obtained.
An exploratory qualitative and quantitative analysis of emotions in issue report comments of open source systems
MURGIA, ALESSANDRO;ORTU, MARCO;
2018-01-01
Abstract
Software development -just like any other human collaboration - inevitably evokes emotions like joy or sadness, which are known to affect the group dynamics within a team. Today, little is known about those individual emotions and whether they can be discerned at all in the development artifacts produced during a project. This paper analyzes (a) whether issue reportsâa common development artifact, rich in contentâconvey emotional information and (b) whether humans agree on the presence of these emotions. From the analysis of the issue comments of 117 projects of the Apache Software Foundation, we find that developers express emotions (in particular gratitude, joy and sadness). However, the more context is provided about an issue report, the more human raters start to doubt and nuance their interpretation. Based on these results, we demonstrate the feasibility of a machine learning classifier for identifying issue comments containing gratitude, joy and sadness. Such a classifier, using emotion-driving words and technical terms, obtains a good precision and recall for identifying the emotion love, while for joy and sadness a lower recall is obtained.File | Dimensione | Formato | |
---|---|---|---|
Empirical Software Engineering_2017.pdf
Solo gestori archivio
Descrizione: articolo
Tipologia:
versione editoriale (VoR)
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.