In this review an overview of the application of computational approaches is given. Specifically, the uses of Quantitative Structure-Activity Relationship (QSAR) methods for in silico identification of new families of compounds as novel tyrosinase inhibitors are revised. Assembling, validation of models through prediction series, and virtual screening of external data sets are also shown, to prove the accuracy of the QSAR models obtained with the TOMOCOMD-CARDD (TOpological MOlecular COMputational Design Computer-Aided Rational Drug Design) software and Linear Discriminant Analysis (LDA) as statistical technique. Together with this, a database is collected for these QSAR studies, and could be considered a useful tool in future QSAR modeling of tyrosinase activity and for scientists that work in the field of this enzyme and its inhibitors. Finally, a translation to real world applications is shown by the use of QSAR models in the identification and posterior in-vitro evaluation of different families of compounds. Several different classes of compounds from various sources (natural and synthetic) were identified. Between them, we can find tetraketones, cycloartanes, ethylsteroids, lignans, dicoumarins and vanilloid derivatives. Finally, some considerations are discussed in order to improve the identification of novel drug-like compounds based on the use of QSAR-Ligand-Based Virtual Screening (LBVS)

Ligand-based computer-aided discovery of tyrosinase inhibitors. Applications of the TOMOCOMD-CARDD method to the elucidation of new compounds

RESCIGNO, ANTONIO;
2010-01-01

Abstract

In this review an overview of the application of computational approaches is given. Specifically, the uses of Quantitative Structure-Activity Relationship (QSAR) methods for in silico identification of new families of compounds as novel tyrosinase inhibitors are revised. Assembling, validation of models through prediction series, and virtual screening of external data sets are also shown, to prove the accuracy of the QSAR models obtained with the TOMOCOMD-CARDD (TOpological MOlecular COMputational Design Computer-Aided Rational Drug Design) software and Linear Discriminant Analysis (LDA) as statistical technique. Together with this, a database is collected for these QSAR studies, and could be considered a useful tool in future QSAR modeling of tyrosinase activity and for scientists that work in the field of this enzyme and its inhibitors. Finally, a translation to real world applications is shown by the use of QSAR models in the identification and posterior in-vitro evaluation of different families of compounds. Several different classes of compounds from various sources (natural and synthetic) were identified. Between them, we can find tetraketones, cycloartanes, ethylsteroids, lignans, dicoumarins and vanilloid derivatives. Finally, some considerations are discussed in order to improve the identification of novel drug-like compounds based on the use of QSAR-Ligand-Based Virtual Screening (LBVS)
2010
Ligand-based virtual screening (LBVS), Quantitative structure-activity relationship (QSAR), TOMOCOMD-CARDD, Tyrosinase inhibitor
File in questo prodotto:
File Dimensione Formato  
Current Pharmaceutical Design 2010.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 953.21 kB
Formato Adobe PDF
953.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/22759
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 55
social impact