Antidepressants have been shown to affect glial cell functions and intracellular signaling through mechanisms that are still not completely understood. In the present study, we provide evidence that in glial cells the lysophosphatidic acid (LPA) receptor LPA1 mediates antidepressant-induced growth factor receptor transactivation, ERK1/2 signaling, and protection from oxidative stress. Thus, in C6 glioma cells and rat cortical astrocytes, ERK1/2 activation induced by either amitriptyline or mianserin was antagonized by Ki16425 and VPC 12249 (S), which block LPA1 and LPA3 receptors, and by AM966, which selectively blocks LPA1 Cell depletion of LPA1 with siRNA treatment markedly reduced antidepressant- and LPA-induced ERK1/2 phosphorylation. LPA1 blockade prevented antidepressant-induced phosphorylation of the transcription factors CREB and Elk-1. Antidepressants and LPA signaling to ERK1/2 was abrogated by cell treatment with pertussis toxin and by the inhibition of fibroblast growth factor (FGF) receptor (FGF-R) and platelet-derived growth factor receptor (PDGF-R) tyrosine kinases. Both Ki16425 and AM966 suppressed antidepressant-induced phosphorylation of FGF-R. Moreover, blockade of LPA1 or inhibition of FGF-R and PDGF-R activities prevented antidepressant-stimulated Akt and GSK-3β phosphorylations. Mianserin protected C6 glioma cells and astrocytes from apoptotic cell death induced by H2O2, as indicated by increased cell viability, decreased expression of cleaved caspase 3, reduced cleavage of poly-ADP ribose polymerase and inhibition of DNA fragmentation. The protective effects of mianserin were antagonized by AM966. These data indicate that LPA1 constitutes a novel molecular target of the regulatory actions of tricyclic and tetracyclic antidepressants in glial cells.
LPA1 mediates antidepressant-induced ERK1/2 signaling and protection from oxidative stress in glial cells
Olianas, Maria C;Dedoni, Simona;Onali, Pierluigi
2016-01-01
Abstract
Antidepressants have been shown to affect glial cell functions and intracellular signaling through mechanisms that are still not completely understood. In the present study, we provide evidence that in glial cells the lysophosphatidic acid (LPA) receptor LPA1 mediates antidepressant-induced growth factor receptor transactivation, ERK1/2 signaling, and protection from oxidative stress. Thus, in C6 glioma cells and rat cortical astrocytes, ERK1/2 activation induced by either amitriptyline or mianserin was antagonized by Ki16425 and VPC 12249 (S), which block LPA1 and LPA3 receptors, and by AM966, which selectively blocks LPA1 Cell depletion of LPA1 with siRNA treatment markedly reduced antidepressant- and LPA-induced ERK1/2 phosphorylation. LPA1 blockade prevented antidepressant-induced phosphorylation of the transcription factors CREB and Elk-1. Antidepressants and LPA signaling to ERK1/2 was abrogated by cell treatment with pertussis toxin and by the inhibition of fibroblast growth factor (FGF) receptor (FGF-R) and platelet-derived growth factor receptor (PDGF-R) tyrosine kinases. Both Ki16425 and AM966 suppressed antidepressant-induced phosphorylation of FGF-R. Moreover, blockade of LPA1 or inhibition of FGF-R and PDGF-R activities prevented antidepressant-stimulated Akt and GSK-3β phosphorylations. Mianserin protected C6 glioma cells and astrocytes from apoptotic cell death induced by H2O2, as indicated by increased cell viability, decreased expression of cleaved caspase 3, reduced cleavage of poly-ADP ribose polymerase and inhibition of DNA fragmentation. The protective effects of mianserin were antagonized by AM966. These data indicate that LPA1 constitutes a novel molecular target of the regulatory actions of tricyclic and tetracyclic antidepressants in glial cells.File | Dimensione | Formato | |
---|---|---|---|
JPET 2016.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.