We discuss a generalization of the Snyder model compatible with undeformed Lorentz symmetries, which we describe in terms of a large class of deformations of the Heisenberg algebra. The corresponding deformed addition of momenta, the twist and the R-matrix are calculated to first order in the deformation parameters for all models. In the particular case of the Snyder realization, an analytic formula for the twist is obtained.

Snyder-type space-times, twisted Poincaré algebra and addition of momenta

Mignemi, S.;
2017-01-01

Abstract

We discuss a generalization of the Snyder model compatible with undeformed Lorentz symmetries, which we describe in terms of a large class of deformations of the Heisenberg algebra. The corresponding deformed addition of momenta, the twist and the R-matrix are calculated to first order in the deformation parameters for all models. In the particular case of the Snyder realization, an analytic formula for the twist is obtained.
Noncommutative geometry; Snyder model; Atomic and molecular physics, and optics; Nuclear and high energy physics; Astronomy and astrophysics
File in questo prodotto:
File Dimensione Formato  
093l.pdf

Solo gestori archivio

Tipologia: versione pre-print
Dimensione 76.44 kB
Formato Adobe PDF
76.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/233208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact