Concrete Filled Steel Tubular (CFST) structures are increasingly used not only for columns in tall buildings but also in the arch trusses of many arch bridges and in the truss girders of buildings and bridge decks. Therefore, the chords of Circular Hollow Section (CHS) truss arches and girders are increasingly filled with concrete, effectively making them CFST structures. In addition to the strength and stiffness of the CFST members, the failure mode of the CFST joint connecting them to the tubular member is also affected by the concrete filling. In this study, truss girders with different web arrangements were tested, and their behaviour investigated. The girders were not slender because they were designed to attain the peak limiting state for joint failure rather than chord failure due to bending moments. Moreover, two other types of girders were tested: one without concrete-filled chords (CHS girder) and another with only the upper chord filled with concrete; thus allowing an investigation of how a concrete-filled chord affects joint failure mode. The geometry of the CHS girder joints was such that only chord face failure and punching shear failure could occur. The former required an inward deformation that was prevented by the concrete filling in a CFST girder with similar geometry. Finally, the study considers extending the Eurocode 3 and the AWS D1.1 code formulae, originally proposed for CHS joints, to calculate the resistance of CFST joints.

Experimental study on joint resistance and failure modes of concrete filled steel tubular (CFST) truss girders

Fenu, Luigi;
2018-01-01

Abstract

Concrete Filled Steel Tubular (CFST) structures are increasingly used not only for columns in tall buildings but also in the arch trusses of many arch bridges and in the truss girders of buildings and bridge decks. Therefore, the chords of Circular Hollow Section (CHS) truss arches and girders are increasingly filled with concrete, effectively making them CFST structures. In addition to the strength and stiffness of the CFST members, the failure mode of the CFST joint connecting them to the tubular member is also affected by the concrete filling. In this study, truss girders with different web arrangements were tested, and their behaviour investigated. The girders were not slender because they were designed to attain the peak limiting state for joint failure rather than chord failure due to bending moments. Moreover, two other types of girders were tested: one without concrete-filled chords (CHS girder) and another with only the upper chord filled with concrete; thus allowing an investigation of how a concrete-filled chord affects joint failure mode. The geometry of the CHS girder joints was such that only chord face failure and punching shear failure could occur. The former required an inward deformation that was prevented by the concrete filling in a CFST girder with similar geometry. Finally, the study considers extending the Eurocode 3 and the AWS D1.1 code formulae, originally proposed for CHS joints, to calculate the resistance of CFST joints.
2018
CFST; Failure mode; Joint; Joint resistance; Truss; Tubular structures; Civil and Structural Engineering; Building and Construction; Mechanics of Materials; 2506
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0143974X1730490X-main.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/233814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 39
social impact