The origin of the dissolution of methylammonium lead trihalide (MAPI) crystals in liquid water is clarified by finite-temperature molecular dynamics by developing a MYP-based force field (MYP1) for water-MAPI systems. A thermally activated process is found with an energy barrier of 0.36 eV consisting of a layer-by-layer degradation with generation of inorganic PbI2films and solvation of MA and I ions. We rationalize the effect of water on MAPI by identifying a transition from a reversible absorption and diffusion in the presence of vapor to the irreversible destruction of the crystal lattice in liquid due to a cooperative action of water molecules. A strong water-MAPI interaction is found with a binding energy of 0.41 eV/H2O and wetting energy of 0.23 N/m. The water vapor absorption is energetically favored (0.29 eV/H2O), and the infiltrated molecules can migrate within the crystal with a diffusion coefficient D = 1.7 × 10-8cm2/s and activation energy of 0.28 eV

Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water

Caddeo, Claudia;Meloni, Simone;Filippetti, Alessio;
2017-01-01

Abstract

The origin of the dissolution of methylammonium lead trihalide (MAPI) crystals in liquid water is clarified by finite-temperature molecular dynamics by developing a MYP-based force field (MYP1) for water-MAPI systems. A thermally activated process is found with an energy barrier of 0.36 eV consisting of a layer-by-layer degradation with generation of inorganic PbI2films and solvation of MA and I ions. We rationalize the effect of water on MAPI by identifying a transition from a reversible absorption and diffusion in the presence of vapor to the irreversible destruction of the crystal lattice in liquid due to a cooperative action of water molecules. A strong water-MAPI interaction is found with a binding energy of 0.41 eV/H2O and wetting energy of 0.23 N/m. The water vapor absorption is energetically favored (0.29 eV/H2O), and the infiltrated molecules can migrate within the crystal with a diffusion coefficient D = 1.7 × 10-8cm2/s and activation energy of 0.28 eV
2017
Classical molecular dynamics; Degradation kinetics; DFT; Hybrid perovskites; Model potential; MYP; Water adhesion; Materials science (all); Engineering (all); Physics and astronomy (all)
File in questo prodotto:
File Dimensione Formato  
Caddeo ACSNano 2017.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 6.92 MB
Formato Adobe PDF
6.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/233864
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 68
social impact