All density-functional calculations of single-molecule transport to date have used continuous exchange-correlation approximations. The lack of derivative discontinuity in such calculations leads to the erroneous prediction of metallic transport for insulating molecules. A simple and computationally undemanding atomic self-interaction correction (SIC) opens conduction gaps in I-V characteristics that otherwise are predicted metallic, as in the case of the prototype Au/ditholated-benzene/Au junction. © 2005 The American Physical Society.
Self-interaction errors in density-functional calculations of electronic transport
Filippetti, A.;
2005-01-01
Abstract
All density-functional calculations of single-molecule transport to date have used continuous exchange-correlation approximations. The lack of derivative discontinuity in such calculations leads to the erroneous prediction of metallic transport for insulating molecules. A simple and computationally undemanding atomic self-interaction correction (SIC) opens conduction gaps in I-V characteristics that otherwise are predicted metallic, as in the case of the prototype Au/ditholated-benzene/Au junction. © 2005 The American Physical Society.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.