The full exploitation of the structure of large scale algebraic problems is often crucial for their numerical solution. Matlab is a computational environment which supports sparse matrices, besides full ones, and allows one to add new types of variables (classes) and define the action of arithmetic operators and functions on them. The smt toolbox for Matlab introduces two new classes for circulant and Toeplitz matrices, and implements optimized storage and fast computational routines for them, transparently to the user. The toolbox, available in Netlib, is intended to be easily extensible, and provides a collection of test matrices and a function to compute three circulant preconditioners, to speed up iterative methods for linear systems. Moreover, it incorporates a simple device to add to the toolbox new routines for solving Toeplitz linear systems.
smt: a Matlab toolbox for structured matrices
RODRIGUEZ, GIUSEPPE
2012-01-01
Abstract
The full exploitation of the structure of large scale algebraic problems is often crucial for their numerical solution. Matlab is a computational environment which supports sparse matrices, besides full ones, and allows one to add new types of variables (classes) and define the action of arithmetic operators and functions on them. The smt toolbox for Matlab introduces two new classes for circulant and Toeplitz matrices, and implements optimized storage and fast computational routines for them, transparently to the user. The toolbox, available in Netlib, is intended to be easily extensible, and provides a collection of test matrices and a function to compute three circulant preconditioners, to speed up iterative methods for linear systems. Moreover, it incorporates a simple device to add to the toolbox new routines for solving Toeplitz linear systems.File | Dimensione | Formato | |
---|---|---|---|
smt12.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
614.16 kB
Formato
Adobe PDF
|
614.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.