To cope with the increasing variability and sophistication of modern attacks, machine learning has been widely adopted as a statistically-sound tool for malware detection. However, its security against well-crafted attacks has not only been recently questioned, but it has been shown that machine learning exhibits inherent vulnerabilities that can be exploited to evade detection at test time. In other words, machine learning itself can be the weakest link in a security system. In this paper, we rely upon a previously-proposed attack framework to categorize potential attack scenarios against learning-based malware detection tools, by modeling attackers with different skills and capabilities. We then define and implement a set of corresponding evasion attacks to thoroughly assess the security of Drebin, an Android malware detector. The main contribution of this work is the proposal of a simple and scalable secure-learning paradigm that mitigates the impact of evasion attacks, while only slightly worsening the detection rate in the absence of attack. We finally argue that our secure-learning approach can also be readily applied to other malware detection tasks
Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection
Demontis, AmbraPrimo
;Melis, Marco;Biggio, Battista
;Maiorca, Davide;Corona, Igino;Giacinto, Giorgio;Roli, FabioUltimo
2019-01-01
Abstract
To cope with the increasing variability and sophistication of modern attacks, machine learning has been widely adopted as a statistically-sound tool for malware detection. However, its security against well-crafted attacks has not only been recently questioned, but it has been shown that machine learning exhibits inherent vulnerabilities that can be exploited to evade detection at test time. In other words, machine learning itself can be the weakest link in a security system. In this paper, we rely upon a previously-proposed attack framework to categorize potential attack scenarios against learning-based malware detection tools, by modeling attackers with different skills and capabilities. We then define and implement a set of corresponding evasion attacks to thoroughly assess the security of Drebin, an Android malware detector. The main contribution of this work is the proposal of a simple and scalable secure-learning paradigm that mitigates the impact of evasion attacks, while only slightly worsening the detection rate in the absence of attack. We finally argue that our secure-learning approach can also be readily applied to other malware detection tasksFile | Dimensione | Formato | |
---|---|---|---|
07917369.pdf
accesso aperto
Tipologia:
versione post-print (AAM)
Dimensione
7.59 MB
Formato
Adobe PDF
|
7.59 MB | Adobe PDF | Visualizza/Apri |
07917369.pdf
Solo gestori archivio
Descrizione: articolo
Tipologia:
versione editoriale (VoR)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.