This study gives a contribution to assess the efficacy of some LDHs (layered double hydroxides) in Sb(V) uptake and understand the mechanisms involved in the removal process. Uncalcined nitrate Mg/Al LDHs and the mixed Mg-Al oxides derived from calcined carbonate Mg/Al LDHs mainly remove Sb(OH)6âfrom aqueous solution through the formation of a brandholzite-like phase (a non-LDH compound with general formula Mg[Sb(OH)6]2·6H2O), although with a different efficiency (< 50 and 90â100% of Sb(V) removed, respectively). The formation of a brandholzite-like compound highlights the fundamental role of Mg in the removal process. The Sb(OH)6âremoval capacity of uncalcined nitrate Mg/Al LDHs increases from 22 to 46% as the Mg/Al molar ratio decreases from 4 to 2 thanks to the increasing excess of positive charge of brucite-like sheets and the expanding interlayer thickness due to the different spatial orientations of nitrate groups (flat for Mg/Al = 4, perpendicular for Mg/Al = 2). The presence of Fe3+in the trivalent cationic site of carbonate LDHs (Mg/(Al + Fe) = 3/(0.5 + 0.5)) improves the Sb(OH)6âremoval capacity of their calcined products. When Mg is replaced by Zn in the divalent cationic site of carbonate LDHs and the sorption experiments are performed using the mixed Zn-Al oxides derived from calcination, Sb(OH)6âis mainly removed from the solution through the reconstruction of an antimonate LDH structure (i.e., a zincalstibite-like compound with general formula Zn2Al(OH)6[Sb(OH)6]). The removal efficiency of calcined carbonate Zn/Al LDHs is high and comparable to that of calcined carbonate Mg/Al LDHs; however, the mechanisms involved in the removal process are substantially different: entrance of Sb(OH)6âin the interlayer in the first case, adsorption of Sb(OH)6âonto the surface and formation of a new phase (a brandholzite-like compound) in the second case. In both cases, the removal processes are described with the pseudo-second-order kinetic model; the theoretical maximum adsorption capacity determined with the Langmuir isotherm results to be 4.54 and 4.37 mmol gâ1for calcined carbonate Mg/AlFe and Zn/Al LDHs, respectively.
Antimonate uptake by calcined and uncalcined layered double hydroxides: effect of cationic composition and M2+/M3+molar ratio
Dore, Elisabetta;Frau, Franco
2018-01-01
Abstract
This study gives a contribution to assess the efficacy of some LDHs (layered double hydroxides) in Sb(V) uptake and understand the mechanisms involved in the removal process. Uncalcined nitrate Mg/Al LDHs and the mixed Mg-Al oxides derived from calcined carbonate Mg/Al LDHs mainly remove Sb(OH)6âfrom aqueous solution through the formation of a brandholzite-like phase (a non-LDH compound with general formula Mg[Sb(OH)6]2·6H2O), although with a different efficiency (< 50 and 90â100% of Sb(V) removed, respectively). The formation of a brandholzite-like compound highlights the fundamental role of Mg in the removal process. The Sb(OH)6âremoval capacity of uncalcined nitrate Mg/Al LDHs increases from 22 to 46% as the Mg/Al molar ratio decreases from 4 to 2 thanks to the increasing excess of positive charge of brucite-like sheets and the expanding interlayer thickness due to the different spatial orientations of nitrate groups (flat for Mg/Al = 4, perpendicular for Mg/Al = 2). The presence of Fe3+in the trivalent cationic site of carbonate LDHs (Mg/(Al + Fe) = 3/(0.5 + 0.5)) improves the Sb(OH)6âremoval capacity of their calcined products. When Mg is replaced by Zn in the divalent cationic site of carbonate LDHs and the sorption experiments are performed using the mixed Zn-Al oxides derived from calcination, Sb(OH)6âis mainly removed from the solution through the reconstruction of an antimonate LDH structure (i.e., a zincalstibite-like compound with general formula Zn2Al(OH)6[Sb(OH)6]). The removal efficiency of calcined carbonate Zn/Al LDHs is high and comparable to that of calcined carbonate Mg/Al LDHs; however, the mechanisms involved in the removal process are substantially different: entrance of Sb(OH)6âin the interlayer in the first case, adsorption of Sb(OH)6âonto the surface and formation of a new phase (a brandholzite-like compound) in the second case. In both cases, the removal processes are described with the pseudo-second-order kinetic model; the theoretical maximum adsorption capacity determined with the Langmuir isotherm results to be 4.54 and 4.37 mmol gâ1for calcined carbonate Mg/AlFe and Zn/Al LDHs, respectively.File | Dimensione | Formato | |
---|---|---|---|
ESPR_2018.pdf
Solo gestori archivio
Descrizione: Articolo
Tipologia:
versione editoriale (VoR)
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.