Organic electronic devices fabricated on flexible substrates are promising candidates for applications in environments where flexible, lightweight, and radiation hard materials are required. In this work, device parameters such as threshold voltage, charge mobility, and trap density of 13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) have been monitored for performing electrical measurements before and after irradiation by high-energy protons. The observed reduction of charge carrier mobility following irradiation can be only partially ascribed to the increased trap density. Indeed, we used other techniques to identify additional effects induced by proton irradiation in such devices. Atomic force microscopy reveals morphological defects occurring in the organic dielectric layer induced by the impinging protons, which, in turn, induce a strain on the TIPS-pentacene crystallites lying above. The effects of this strain are investigated by density functional theory simulations of two model structures, which describe the TIPS-pentacene crystalline films at equilibrium and under strain. The two different density of states distributions in the valence band have been correlated with the photocurrent spectra acquired before and after proton irradiation. We conclude that the degradation of the dielectric layer and the organic semiconductor sensitivity to strain are the two main phenomena responsible for the reduction of OTFT mobility after proton irradiation.

Space Environment Effects on Flexible, Low-Voltage Organic Thin-Film Transistors

Cosseddu, Piero;Bonfiglio, Annalisa;Fraboni, Beatrice
2017-01-01

Abstract

Organic electronic devices fabricated on flexible substrates are promising candidates for applications in environments where flexible, lightweight, and radiation hard materials are required. In this work, device parameters such as threshold voltage, charge mobility, and trap density of 13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) have been monitored for performing electrical measurements before and after irradiation by high-energy protons. The observed reduction of charge carrier mobility following irradiation can be only partially ascribed to the increased trap density. Indeed, we used other techniques to identify additional effects induced by proton irradiation in such devices. Atomic force microscopy reveals morphological defects occurring in the organic dielectric layer induced by the impinging protons, which, in turn, induce a strain on the TIPS-pentacene crystallites lying above. The effects of this strain are investigated by density functional theory simulations of two model structures, which describe the TIPS-pentacene crystalline films at equilibrium and under strain. The two different density of states distributions in the valence band have been correlated with the photocurrent spectra acquired before and after proton irradiation. We conclude that the degradation of the dielectric layer and the organic semiconductor sensitivity to strain are the two main phenomena responsible for the reduction of OTFT mobility after proton irradiation.
2017
electronic transport properties; flexible electronics; organic electronics; proton beam irradiation; radiation damage; thin-film transistor degradation; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
A054_Space Environment Effects on OTFTs_ACS_AMI.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/235796
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact