Herein, we report the synthesis and the anion binding properties of a family of N,N′-diphenylureas L1-L15, bearing on the aromatic ring(s) halogens (chlorine and iodine) and/or nitro or trifluoromethyl electron-withdrawing groups. The analysis of the crystal structures obtained from single crystal X-ray diffraction experiments shows that self-assembled chains or tapes connected via N–H···O hydrogen bonds are the most commonly adopted arrangements for this type of molecules in the crystal lattice. In the presence of anion guests or solvent molecules with competing hydrogen bond donors and acceptors, other supramolecular arrangements can be observed. Solution studies conducted in DMSO-d6/0.5% H2O by means of 1H-NMR titrations show the formation of 1:1 adducts with all receptors. The different observed affinities of the receptors for the anion guests were rationalised in terms of steric hindrance of the substituents on the phenyl rings and their electron-withdrawing properties.

Halogen-substituted ureas for anion binding: solid state and solution studies

Arianna Casula;FORNASIER, MARCO;Riccardo Montis
;
Alexandre Bettoschi;Vito Lippolis;PICCI, GIACOMO;Claudia Caltagirone
2017-01-01

Abstract

Herein, we report the synthesis and the anion binding properties of a family of N,N′-diphenylureas L1-L15, bearing on the aromatic ring(s) halogens (chlorine and iodine) and/or nitro or trifluoromethyl electron-withdrawing groups. The analysis of the crystal structures obtained from single crystal X-ray diffraction experiments shows that self-assembled chains or tapes connected via N–H···O hydrogen bonds are the most commonly adopted arrangements for this type of molecules in the crystal lattice. In the presence of anion guests or solvent molecules with competing hydrogen bond donors and acceptors, other supramolecular arrangements can be observed. Solution studies conducted in DMSO-d6/0.5% H2O by means of 1H-NMR titrations show the formation of 1:1 adducts with all receptors. The different observed affinities of the receptors for the anion guests were rationalised in terms of steric hindrance of the substituents on the phenyl rings and their electron-withdrawing properties.
File in questo prodotto:
File Dimensione Formato  
75.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/236545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact