Scoring rules give rise to methods for statistical inference and are useful tools to achieve robustness or reduce computations. Scoring rule inference is generally performed through first-order approximations to the distribution of the scoring rule estimator or of the ratio-type statistic. In order to improve the accuracy of first-order methods even in simple models, we propose bootstrap adjustments of signed scoring rule root statistics for a scalar parameter of interest in presence of nuisance parameters. The method relies on the parametric bootstrap approach that avoids onerous calculations specific of analytical adjustments. Numerical examples illustrate the accuracy of the proposed method.
Bootstrap adjustments of signed scoring rule root statistics
Musio, M.;Ventura, L.
2018-01-01
Abstract
Scoring rules give rise to methods for statistical inference and are useful tools to achieve robustness or reduce computations. Scoring rule inference is generally performed through first-order approximations to the distribution of the scoring rule estimator or of the ratio-type statistic. In order to improve the accuracy of first-order methods even in simple models, we propose bootstrap adjustments of signed scoring rule root statistics for a scalar parameter of interest in presence of nuisance parameters. The method relies on the parametric bootstrap approach that avoids onerous calculations specific of analytical adjustments. Numerical examples illustrate the accuracy of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
Bootstrap adjustments of signed scoring rule root statistics.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
702.9 kB
Formato
Adobe PDF
|
702.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.