Results obtained during in-vitro experiments concerning human osteoblasts cultivated on the surface of dense samples produced by Spark Plasma Sintering from three types of hydroxyapatite powders are described and discussed. The sintered products display diverse composition and microstructures which are found to significantly influence the biological response of the cells. Osteoblasts adhesion, viability and proliferation are quantitatively comparable for the three classes of bioceramics, whereas matrix mineralization occurs only in products exclusively consisting of hydroxyapatite. Correspondingly, a calcium-phosphate layer exhibiting a trabecular-like microstructure is deposited on the materials surface. Matrix mineralization is favored when the substrate is composed of submicrometer-sized apatite grains. On the other hand, the latter phenomena is markedly suppressed, and so does the formation of the new apatite phase, when cells are seeded on sintered disks composed of β-Tri-Calcium Phosphate, which was formed during the sintering process from the decomposition of initial apatite.

In-vitro behavior of different fully dense calcium phosphate materials fabricated by Spark Plasma Sintering

Mancuso, Luisa
Primo
;
Desogus, Luca
Secondo
;
Orrù, Roberto
;
Loy, Francesco
Penultimo
;
Cao, Giacomo
Ultimo
2017-01-01

Abstract

Results obtained during in-vitro experiments concerning human osteoblasts cultivated on the surface of dense samples produced by Spark Plasma Sintering from three types of hydroxyapatite powders are described and discussed. The sintered products display diverse composition and microstructures which are found to significantly influence the biological response of the cells. Osteoblasts adhesion, viability and proliferation are quantitatively comparable for the three classes of bioceramics, whereas matrix mineralization occurs only in products exclusively consisting of hydroxyapatite. Correspondingly, a calcium-phosphate layer exhibiting a trabecular-like microstructure is deposited on the materials surface. Matrix mineralization is favored when the substrate is composed of submicrometer-sized apatite grains. On the other hand, the latter phenomena is markedly suppressed, and so does the formation of the new apatite phase, when cells are seeded on sintered disks composed of β-Tri-Calcium Phosphate, which was formed during the sintering process from the decomposition of initial apatite.
2017
Calcium phosphates; In-vitro test; Microstructure; Mineralization; Osteoblasts; Spark Plasma Sintering; Electronic, optical and magnetic materials; Ceramics and composites; Process chemistry and technology; Surfaces, coatings and films; Materials chemistry; Metals and alloys
File in questo prodotto:
File Dimensione Formato  
ceramics.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/239264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact