The dependence structure between the main energy markets (such as crude oil, natural gas, and coal) and the main stock index plays a crucial role in the economy of a given country. As the dependence structure between these series is dramatically complex and it appears to change over time, time-varying dependence structure given by a class of dynamic copulas is taken into account. To this end, each pair of time series returns with a dynamic t-Student copula is modelled, which takes as input the time-varying correlation. The correlation evolves with the DCC(1,1) equation developed by Engle. The model is tested through a simulation by employing empirical data issued from the Italian Stock Market and the main connected energy markets. The author considers empirical distributions for each marginal series returns in order to focus on the dependence structure. The model’s parameters are estimated by maximization of the log-likelihood. Also evidence is found that the proposed model fits correctly, for each pair of series, the left tail dependence coefficient and it is then compared with a static copula dependence structure which clearly underperforms the number of joint extreme values at a given confidence level.

Dynamic dependence structure between energy markets and the Italian stock index

Masala, Giovanni
2018-01-01

Abstract

The dependence structure between the main energy markets (such as crude oil, natural gas, and coal) and the main stock index plays a crucial role in the economy of a given country. As the dependence structure between these series is dramatically complex and it appears to change over time, time-varying dependence structure given by a class of dynamic copulas is taken into account. To this end, each pair of time series returns with a dynamic t-Student copula is modelled, which takes as input the time-varying correlation. The correlation evolves with the DCC(1,1) equation developed by Engle. The model is tested through a simulation by employing empirical data issued from the Italian Stock Market and the main connected energy markets. The author considers empirical distributions for each marginal series returns in order to focus on the dependence structure. The model’s parameters are estimated by maximization of the log-likelihood. Also evidence is found that the proposed model fits correctly, for each pair of series, the left tail dependence coefficient and it is then compared with a static copula dependence structure which clearly underperforms the number of joint extreme values at a given confidence level.
2018
DCC model; dependence structure; dynamic copulas; energy markets; MIB stock market; tail dependence
File in questo prodotto:
File Dimensione Formato  
imfi_2018_02_Masala.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 623.78 kB
Formato Adobe PDF
623.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/246611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact