This study focused on the mechanisms that fatty acid conjugating strains-Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330-influence lipid metabolism when ingested with α-linolenic acid (ALA) enriched diet. Four groups of BALB/c mice received ALA enriched diet (3% (w/w)) either alone or in combination with B. breve NCIMB 702258 or B. breve DPC 6330 (10 9 CFU/day) or unsupplemented control diet for six weeks. The overall n-3 PUFA score was increased in all groups receiving the ALA enriched diet. Hepatic peroxisomal beta oxidation increased following supplementation of the ALA enriched diet with B. breve (P < 0.05) and so the ability of the strains to produce c9t11 conjugated linoleic acid (CLA) was identified in adipose tissue. Furthermore, a strain specific effect of B. breve NCIMB 702258 was found on the endocannabinoid system (ECS). Liver triglycerides (TAG) were reduced following ALA supplementation, compared with unsupplemented controls (P < 0.01) while intervention with B. breve further reduced liver TAG (P < 0.01), compared with the ALA enriched control. These data indicate that the interactions of the gut microbiota with fatty acid metabolism directly affect host health by modulating n-3 PUFA score and the ECS.

Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat

Lisai, Sara;Banni, Sebastiano;
2017-01-01

Abstract

This study focused on the mechanisms that fatty acid conjugating strains-Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330-influence lipid metabolism when ingested with α-linolenic acid (ALA) enriched diet. Four groups of BALB/c mice received ALA enriched diet (3% (w/w)) either alone or in combination with B. breve NCIMB 702258 or B. breve DPC 6330 (10 9 CFU/day) or unsupplemented control diet for six weeks. The overall n-3 PUFA score was increased in all groups receiving the ALA enriched diet. Hepatic peroxisomal beta oxidation increased following supplementation of the ALA enriched diet with B. breve (P < 0.05) and so the ability of the strains to produce c9t11 conjugated linoleic acid (CLA) was identified in adipose tissue. Furthermore, a strain specific effect of B. breve NCIMB 702258 was found on the endocannabinoid system (ECS). Liver triglycerides (TAG) were reduced following ALA supplementation, compared with unsupplemented controls (P < 0.01) while intervention with B. breve further reduced liver TAG (P < 0.01), compared with the ALA enriched control. These data indicate that the interactions of the gut microbiota with fatty acid metabolism directly affect host health by modulating n-3 PUFA score and the ECS.
2017
LEPTIN-RESISTANT MICE; DIET-INDUCED OBESITY; GUT MICROBIOTA; LIVER-DISEASE; BODY-FAT; INSULIN-RESISTANCE; ENERGY-METABOLISM; ANANDAMIDE LEVELS; LIPID-METABOLISM; CANCER-CELLS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/251351
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact