We establish a symmetry result for a non-autonomous overdetermined problem associated to a sublinear fractional equation. To this purpose we prove, in particular, that the solution of the corresponding Dirichlet prob- lem is monotonically increasing with respect to the domain. We also obtain a strong minimum principle and a boundary-point lemma for linear fractional equations that may have an independent interest.

Non-local sublinear problems: existence, comparison, and radial symmetry

Antonio Greco
;
2019-01-01

Abstract

We establish a symmetry result for a non-autonomous overdetermined problem associated to a sublinear fractional equation. To this purpose we prove, in particular, that the solution of the corresponding Dirichlet prob- lem is monotonically increasing with respect to the domain. We also obtain a strong minimum principle and a boundary-point lemma for linear fractional equations that may have an independent interest.
2019
Overdetermined problem; Radial symmetry; Fractional Laplacian; Comparison principle; Boundary-point lemma
File in questo prodotto:
File Dimensione Formato  
21_Greco-Mascia AIMS.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 446.38 kB
Formato Adobe PDF
446.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/252508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact