The implementation of a graphitic Carbon Nitride (g-C3N4) based organic-inorganic hybrid is discussed. The inorganic coating was deposited by Atomic Layer Deposition (ALD), allowing full control of thickness and homogeneity of deposited layer. We tested two different coating layers, alumina and titania, deposited by classical ALD, to discuss the effects of the precursor and gas reactivity on two Carbon Nitride samples with different surface terminations. Morphological (SEM, EDAX, TEM) and structural (Raman, XRD, XPS) measurements as well the study of decay kinetics upon optical excitation (time resolved luminescence) indicate that proper selection of organic substrate and reacting gas allows achieving homogenous covering by Metal oxide with classical ALD. In particular, a hybrid system g-C3N4/TiO2 has been successfully achieved by using tetrakis(dimethylamido)titanium(IV) (TDMAT) as precursor.
ALD growth of metal oxide on carbon nitride polymorphs
Ricci P. C.;Chiriu D.;Salis M.;Carbonaro C. M.;Corpino R.
2018-01-01
Abstract
The implementation of a graphitic Carbon Nitride (g-C3N4) based organic-inorganic hybrid is discussed. The inorganic coating was deposited by Atomic Layer Deposition (ALD), allowing full control of thickness and homogeneity of deposited layer. We tested two different coating layers, alumina and titania, deposited by classical ALD, to discuss the effects of the precursor and gas reactivity on two Carbon Nitride samples with different surface terminations. Morphological (SEM, EDAX, TEM) and structural (Raman, XRD, XPS) measurements as well the study of decay kinetics upon optical excitation (time resolved luminescence) indicate that proper selection of organic substrate and reacting gas allows achieving homogenous covering by Metal oxide with classical ALD. In particular, a hybrid system g-C3N4/TiO2 has been successfully achieved by using tetrakis(dimethylamido)titanium(IV) (TDMAT) as precursor.File | Dimensione | Formato | |
---|---|---|---|
Applied Surface Science 456_2018.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
3.52 MB
Formato
Adobe PDF
|
3.52 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.