Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.

Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits

Margiani G;De Luca MA;
2018-01-01

Abstract

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.
2018
Neuroscience (all)
File in questo prodotto:
File Dimensione Formato  
Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits - mmc2.pdf

Solo gestori archivio

Tipologia: versione pre-print
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DeLuca_Serotonergic Signaling.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 5.12 MB
Formato Adobe PDF
5.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/253103
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact