The m-Peripatetic Vehicle Routing Problem (m-PVRP) consists in finding a set of routes of minimum total cost over m periods so that two customers are never sequenced consecutively during two different periods. It models for example money transports or cash machines supply, and the aim is to minimize the total cost of the routes chosen. The m-PVRP can be considered as a generalization of two well-known NP-hard problems: the Vehicle Routing Problem (VRP or 1-PVRP) and the m-Peripatetic Salesman Problem (m-PSP). In this paper we discuss some complexity results of the problem before presenting upper and lower bounding procedures. Good results are obtained not only on the m-PVRP in general, but also on the VRP and the m-PSP using classical VRP instances and TSPLIB instances.
Lower and upper bounds for the m-peripatetic vehicle routing problem
Wolfler Calvo R
2010-01-01
Abstract
The m-Peripatetic Vehicle Routing Problem (m-PVRP) consists in finding a set of routes of minimum total cost over m periods so that two customers are never sequenced consecutively during two different periods. It models for example money transports or cash machines supply, and the aim is to minimize the total cost of the routes chosen. The m-PVRP can be considered as a generalization of two well-known NP-hard problems: the Vehicle Routing Problem (VRP or 1-PVRP) and the m-Peripatetic Salesman Problem (m-PSP). In this paper we discuss some complexity results of the problem before presenting upper and lower bounding procedures. Good results are obtained not only on the m-PVRP in general, but also on the VRP and the m-PSP using classical VRP instances and TSPLIB instances.File | Dimensione | Formato | |
---|---|---|---|
ngueveu2010.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
434.48 kB
Formato
Adobe PDF
|
434.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.