Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage

Melatonin release by exocytosis in the rat parotid gland

Michela Isola
Primo
;
Jörgen Ekström
;
Raffaella Isola
Penultimo
;
Francesco Loy
Ultimo
2019-01-01

Abstract

Several beneficial effects on oral health are ascribed to melatonin. Due to its lipophilic nature, non-protein-bound circulating melatonin is usually thought to enter the saliva by passive diffusion through salivary acinar gland cells. Recently, however, using transmission electron microscopy (TEM), melatonin was found in acinar secretory granules of human salivary glands. To test the hypothesis that granular located melatonin is actively discharged into the saliva by exocytosis, i.e. contrary to the general belief, the β-adrenergic receptor agonist isoprenaline, which causes the degranulation of acinar parotid serous cells, was administered to anaesthetised rats. Sixty minutes after an intravenous bolus injection of isoprenaline (5 mg kg-1 ), the right parotid gland was removed; pre-administration, the left control gland had been removed. Samples were processed to demonstrate melatonin reactivity using the immunogold staining method. Morphometric assessment was made using TEM. Gold particles labelling melatonin appeared to be preferentially associated with secretory granules, occurring in their matrix and at membrane level but, notably, it was also associated with vesicles, mitochondria and nuclei. Twenty-six per cent of the total granular population (per 100 μm2 per cell area) displayed melatonin labelling in the matrix; three-quarters of this fraction disappeared (P < 0.01) in response to isoprenaline, and melatonin reactivity appeared in dilated lumina. Thus, evidence is provided of an alternative route for melatonin to reach the gland lumen and the oral cavity by active release through exocytosis, a process which is under the influence of parasympathetic and sympathetic nervous activity and is the final event along the so-called regulated secretory pathway. During its stay in granules, anti-oxidant melatonin may protect their protein/peptide constituents from damage
File in questo prodotto:
File Dimensione Formato  
Isola_et_al 2019.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 914.04 kB
Formato Adobe PDF
914.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/255559
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact