The synthesis and characterization of pyrolyzed carbon-supported transition metal/nitrogen (M–Nx/C) material based on FeCo alloy and Polypirrol as source of N atoms are presented. Two different synthetic protocols, a multi-step and a novel one pot single-step approach are compared. In both approaches two different Fe:Co ratio (50:50 and 75:25) were used to obtain Pt-free FeCo-Polypyrrole nanocomposites supported on porous carbon (FeCo/Ppy@C). Structural and morphological characterizations of the samples before and after pyrolysis were carried out by using X-Ray Powder Diffracion, Infrared Spectroscopy and High-Resolution Transmission Electron Microscopy. For both approaches, nanoparticles with a core shell structure but different size and matrix polidispersivity were observed after pyrolysis when a Fe:Co 50:50 ratio was used. Bigger nanoparticles were obtained after pyrolysis in the 75:25 ratio samples, with no significant differences between the two approaches. The electrocatalytical properties of the final samples, investigated by cyclic voltammetry in an acidic electrolyte, showed the presence of a cathodic current density.

(FeCo/Ppy@C): Pt-free FeCo-Polypyrrole Nanocomposites Supported on Porous Carbon for Electrochemical Application

Martina Pilloni
Membro del Collaboration Group
;
Andrea Ardu
Membro del Collaboration Group
;
Valentina Cabras
Membro del Collaboration Group
;
Stefano Columbu
Membro del Collaboration Group
;
Alessandra Scano
Penultimo
Membro del Collaboration Group
;
Guido Ennas
Ultimo
Membro del Collaboration Group
2019-01-01

Abstract

The synthesis and characterization of pyrolyzed carbon-supported transition metal/nitrogen (M–Nx/C) material based on FeCo alloy and Polypirrol as source of N atoms are presented. Two different synthetic protocols, a multi-step and a novel one pot single-step approach are compared. In both approaches two different Fe:Co ratio (50:50 and 75:25) were used to obtain Pt-free FeCo-Polypyrrole nanocomposites supported on porous carbon (FeCo/Ppy@C). Structural and morphological characterizations of the samples before and after pyrolysis were carried out by using X-Ray Powder Diffracion, Infrared Spectroscopy and High-Resolution Transmission Electron Microscopy. For both approaches, nanoparticles with a core shell structure but different size and matrix polidispersivity were observed after pyrolysis when a Fe:Co 50:50 ratio was used. Bigger nanoparticles were obtained after pyrolysis in the 75:25 ratio samples, with no significant differences between the two approaches. The electrocatalytical properties of the final samples, investigated by cyclic voltammetry in an acidic electrolyte, showed the presence of a cathodic current density.
2019
Proton electrolyte membrane fuel cell; Non-precious metal catalysts; Oxygen reduction reaction (ORR); Pt-free electrocatalysts; Conductive polymers; Catalytic hydrogen production
File in questo prodotto:
File Dimensione Formato  
2019 (FeCo_Ppy@C)_ Pt-free.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 712.98 kB
Formato Adobe PDF
712.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/256632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact