Effective monitoring and management applications on modern distribution networks (DNs) require a sound network model and the knowledge of line parameters. Network line impedances are used, among other things, for state estimation and protection relay setting. Phasor measurement units (PMUs) give synchronized voltage and current phasor measurements, referred to a common time reference (coordinated universal time). All synchrophasor measurements can thus be temporally aligned and coordinated across the network. This feature, along with high accuracy and reporting rates, could make PMUs useful for the evaluation of network parameters. However, instrument transformer behavior strongly affects the parameter estimation accuracy. In this paper, a new PMU-based iterative line parameter estimation algorithm for DNs, which includes in the estimation model systematic measurement errors, is presented. This method exploits the simultaneous measurements given by PMUs on different nodes and branches of the network. A complete analysis of uncertainty sources is also performed, allowing the evaluation of estimation uncertainty. Issues related to operating conditions, topology, and measurement uncertainty are thoroughly discussed and referenced to a realistic model of a DN to show how a full network estimator is possible.
Line Impedance Estimation Based on Synchrophasor Measurements for Power Distribution Systems
Pegoraro, Paolo AttilioPrimo
;Castello, Paolo;Muscas, Carlo
;
2019-01-01
Abstract
Effective monitoring and management applications on modern distribution networks (DNs) require a sound network model and the knowledge of line parameters. Network line impedances are used, among other things, for state estimation and protection relay setting. Phasor measurement units (PMUs) give synchronized voltage and current phasor measurements, referred to a common time reference (coordinated universal time). All synchrophasor measurements can thus be temporally aligned and coordinated across the network. This feature, along with high accuracy and reporting rates, could make PMUs useful for the evaluation of network parameters. However, instrument transformer behavior strongly affects the parameter estimation accuracy. In this paper, a new PMU-based iterative line parameter estimation algorithm for DNs, which includes in the estimation model systematic measurement errors, is presented. This method exploits the simultaneous measurements given by PMUs on different nodes and branches of the network. A complete analysis of uncertainty sources is also performed, allowing the evaluation of estimation uncertainty. Issues related to operating conditions, topology, and measurement uncertainty are thoroughly discussed and referenced to a realistic model of a DN to show how a full network estimator is possible.File | Dimensione | Formato | |
---|---|---|---|
08444098_TIM_param_editoriale.pdf
Solo gestori archivio
Descrizione: versione editoriale
Tipologia:
versione editoriale (VoR)
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1_IM-18-17197_accepted paper_to_share_withdisclaimer.pdf
accesso aperto
Descrizione: versione accepted post-print per pubblicazione sul sito del docente/ente
Tipologia:
versione post-print (AAM)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.