Diabetes mellitus type 2 (DMT2) is a metabolic disease characterized by a chronic increase in glycemia that promotes several long-term complications and high mortality. Some enzymes involved in glycaemic control, such as α-(1,4)-glucosidase, have now been established as novel pharmacological targets. Coumarins have shown benefits in attenuating signs and complications of DMT2, including inhibition of this enzyme. In this work, new synthetic coumarins (bearing different amide and aryl substituents) were studied in vitro as inhibitors of α-(1,4)-glucosidase. Among them, five molecules proved to be excellent α-(1,4)-glucosidase inhibitors, being compound 7 (IC50 = 2.19 μM) about 200 times more potent than acarbose, a drug currently used for the treatment of DMT2. In addition, most of the coumarins presented uncompetitive inhibition for the α-(1,4)-glucosidase. Molecular docking studies revealed that coumarins bind to the active site of the enzyme in a more external area comparing to the substrate, without interfering with it, and displaying aromatic and hydrophobic interactions, as well as some hydrogen bonds. According to the results, aromatic interactions with two phenylalanine residues, 157 and 177, were the most common among the studied coumarins. This study is a step forward for the understanding of coumarins as potential anti-diabetic compounds displaying α-(1,4)-glucosidase inhibition.

Targeting α-(1,4)-glucosidase in Diabetes mellitus Type 2: The Role of New Synthetic Coumarins as Potent Inhibitors

CORREIA PINTO CARVALHO DE MATOS, MARIA JOAO
Secondo
;
Delogu G;
2018-01-01

Abstract

Diabetes mellitus type 2 (DMT2) is a metabolic disease characterized by a chronic increase in glycemia that promotes several long-term complications and high mortality. Some enzymes involved in glycaemic control, such as α-(1,4)-glucosidase, have now been established as novel pharmacological targets. Coumarins have shown benefits in attenuating signs and complications of DMT2, including inhibition of this enzyme. In this work, new synthetic coumarins (bearing different amide and aryl substituents) were studied in vitro as inhibitors of α-(1,4)-glucosidase. Among them, five molecules proved to be excellent α-(1,4)-glucosidase inhibitors, being compound 7 (IC50 = 2.19 μM) about 200 times more potent than acarbose, a drug currently used for the treatment of DMT2. In addition, most of the coumarins presented uncompetitive inhibition for the α-(1,4)-glucosidase. Molecular docking studies revealed that coumarins bind to the active site of the enzyme in a more external area comparing to the substrate, without interfering with it, and displaying aromatic and hydrophobic interactions, as well as some hydrogen bonds. According to the results, aromatic interactions with two phenylalanine residues, 157 and 177, were the most common among the studied coumarins. This study is a step forward for the understanding of coumarins as potential anti-diabetic compounds displaying α-(1,4)-glucosidase inhibition.
2018
Coumarins; Diabetes mellitus; α-(1, 4)-glucosidase inhibition; Docking studies; Medicinal chemistry; DMT2
File in questo prodotto:
File Dimensione Formato  
2018 CTMC, 18, 2327-2337(1).pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/257298
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact