The lattice thermal conductivity of the candidate thermoelectric material Mg3Sb2 is studied from first principles, with the inclusion of anharmonic, isotope, and boundary scattering processes, and via an accurate solution of the Boltzmann equation. We find that the anomalously low observed conductivity is due to grain- boundary scattering of phonons, whereas the purely anharmonic conductivity is an order of magnitude larger. Mass disorder due to alloying and off-stoichiometry is also found to contribute significantly to its decrease. Combining ab initio values vs sample size with measured grain-size distributions, we obtain an estimate of κ vs T in nanopolycrystalline material in good agreement with typical experiments, and compute the ZT figure of merit in the various cases.
Ab initio thermal conductivity of thermoelectric Mg3Sb2: Evidence for dominant extrinsic effects
Maccioni, Maria BarbaraPrimo
;Farris, RobertaSecondo
;Fiorentini, Vincenzo
Ultimo
2018-01-01
Abstract
The lattice thermal conductivity of the candidate thermoelectric material Mg3Sb2 is studied from first principles, with the inclusion of anharmonic, isotope, and boundary scattering processes, and via an accurate solution of the Boltzmann equation. We find that the anomalously low observed conductivity is due to grain- boundary scattering of phonons, whereas the purely anharmonic conductivity is an order of magnitude larger. Mass disorder due to alloying and off-stoichiometry is also found to contribute significantly to its decrease. Combining ab initio values vs sample size with measured grain-size distributions, we obtain an estimate of κ vs T in nanopolycrystalline material in good agreement with typical experiments, and compute the ZT figure of merit in the various cases.File | Dimensione | Formato | |
---|---|---|---|
mgsb-k.pdf
Solo gestori archivio
Descrizione: pdf
Tipologia:
versione editoriale
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.