The brown trout (Salmo trutta L.) is widely distributed all around Europe but its natural diversity is threatened by massive stocking with Atlantic domestic strains. Describing the remaining natural genetic diversity and the proportion of domestic hatchery strains in rivers is a prerequisite for smart conservation. The high genetic diversity of brown trout populations around the Tyrrhenian Sea is well known. Use of twelve microsatellites has allowed description of the natural genetic structure of populations and detection of the consequences of stocking. Mitochondrial DNA control region sequences and the LDH-C1* gene enabled placement of each population into one of the six mitochondrial and two allozymic known evolutionary lineages. The Corsican populations showed low intra-population genetic diversity but an exceptionally high level of inter-population differentiation. More southern Tyrrhenian regions exhibited opposite pattern of diversity, partly due to the Atlantic domestic introgression. Globally, the natural structure outlines two north–south clines: high inter-population differentiation and predominance of the Adriatic lineage in the north, but lower inter-population differentiation and the presence of the natural Atlantic lineage in the south. In addition, the Tyrrhenian region is the contact zone between the widespread Adriatic lineage and a local natural Atlantic lineage probably coming from North Africa through the Strait of Gibraltar.

Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers

Vincenzo Caputo Barucchi;Andrea Sabatini;Francesco Palmas;Marco Arculeo;
2019-01-01

Abstract

The brown trout (Salmo trutta L.) is widely distributed all around Europe but its natural diversity is threatened by massive stocking with Atlantic domestic strains. Describing the remaining natural genetic diversity and the proportion of domestic hatchery strains in rivers is a prerequisite for smart conservation. The high genetic diversity of brown trout populations around the Tyrrhenian Sea is well known. Use of twelve microsatellites has allowed description of the natural genetic structure of populations and detection of the consequences of stocking. Mitochondrial DNA control region sequences and the LDH-C1* gene enabled placement of each population into one of the six mitochondrial and two allozymic known evolutionary lineages. The Corsican populations showed low intra-population genetic diversity but an exceptionally high level of inter-population differentiation. More southern Tyrrhenian regions exhibited opposite pattern of diversity, partly due to the Atlantic domestic introgression. Globally, the natural structure outlines two north–south clines: high inter-population differentiation and predominance of the Adriatic lineage in the north, but lower inter-population differentiation and the presence of the natural Atlantic lineage in the south. In addition, the Tyrrhenian region is the contact zone between the widespread Adriatic lineage and a local natural Atlantic lineage probably coming from North Africa through the Strait of Gibraltar.
2019
Microsatellites; mtDNA control region; LDH-C1*; Tyrrhenian brown trout; Conservation
File in questo prodotto:
File Dimensione Formato  
Berrebi trout 2019.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/258445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact