Many types of pairwise interactions take the form of a fixed set of nodes with edges that appear and disappear over time. In the case of discrete-time evolution, the resulting evolving network may be represented by a time-ordered sequence of adjacency matrices. We consider here the issue of representing the system as a single, higher-dimensional block matrix, built from the individual time slices. We focus on the task of computing network centrality measures. From a modeling perspective, we show that there is a suitable block formulation that allows us to recover dynamic centrality measures respecting time's arrow. From a computational perspective, we show that the new block formulation leads to the design of more effective numerical algorithms. In particular, we describe matrix-vector product based algorithms that exploit sparsity. Results are given on realistic data sets.

Block Matrix Formulations for Evolving Networks

Fenu, Caterina
;
2017-01-01

Abstract

Many types of pairwise interactions take the form of a fixed set of nodes with edges that appear and disappear over time. In the case of discrete-time evolution, the resulting evolving network may be represented by a time-ordered sequence of adjacency matrices. We consider here the issue of representing the system as a single, higher-dimensional block matrix, built from the individual time slices. We focus on the task of computing network centrality measures. From a modeling perspective, we show that there is a suitable block formulation that allows us to recover dynamic centrality measures respecting time's arrow. From a computational perspective, we show that the new block formulation leads to the design of more effective numerical algorithms. In particular, we describe matrix-vector product based algorithms that exploit sparsity. Results are given on realistic data sets.
2017
centrality; complex network; evolving network; graph; tensor
File in questo prodotto:
File Dimensione Formato  
1511.07305.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 638.08 kB
Formato Adobe PDF
638.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/258646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact