Textural characterization of pumice clasts from explosive volcanic eruptions provides constraints on magmatic processes through the quantification of crystal and vesicle content, size, shape, vesicle wall thickness and the degree of interconnectivity. The Plinian fallout deposit directly underlying the Campanian Ignimbrite (CI) eruption represents a suitable case to investigate pumice products with different textural characteristics and to link the findings to processes accompanying conduit magma ascent to the crater. The deposit consists of a lower (LFU) and upper (UFU) pumice lapilli bed generated by the sub-steady eruption of trachytic magma with <5 vol%. crystals and a peak discharge rate of 3.2×108 kg/s. Density measurements were performed on samples collected from different stratigraphic intervals at the Voscone-type outcrop, and their textural characteristics were investigated at different magnifications through image analysis techniques. According to clast densities, morphologies and vesicle textures pumice clasts were classified into microvesicular (heterogeneous vesicles), tube (elongated/deformed vesicles) and expanded (coalesced/ inflated vesicles). The combination of density data and textural investigations allowed us to characterize both representative areas and textural extremes of pumice products. Bulk vesicularity spans a broad interval varying from 0.46 to >0.90, with vesicle number density ranging from 107-108 cm-3. The degree of vesicle coalescence is high for all pumice types, with interconnected vesicles generally representing more than 90% of the bulk vesicle population. The results show a high degree of heterogeneous textures among pumice clasts from both phases of the eruption and within each eruption phase, the different pumice types and also within each single pumice type fragment. The origin of pumice clasts with different textural characteristics is ascribed to the development of conduit regions marked by different rheological behavior. The conclusions of this study are that vesicle deformation, degree of coalescence and intense shear at the conduit walls play a major role on the degassing process, hence affecting the entire conduit dynamics.

The Plinian phase of the Campanian Ignimbrite eruption (phlegrean fields, Italy): Evidence from density measurements and textural characterization of pumice

Pioli, Laura;
2003-01-01

Abstract

Textural characterization of pumice clasts from explosive volcanic eruptions provides constraints on magmatic processes through the quantification of crystal and vesicle content, size, shape, vesicle wall thickness and the degree of interconnectivity. The Plinian fallout deposit directly underlying the Campanian Ignimbrite (CI) eruption represents a suitable case to investigate pumice products with different textural characteristics and to link the findings to processes accompanying conduit magma ascent to the crater. The deposit consists of a lower (LFU) and upper (UFU) pumice lapilli bed generated by the sub-steady eruption of trachytic magma with <5 vol%. crystals and a peak discharge rate of 3.2×108 kg/s. Density measurements were performed on samples collected from different stratigraphic intervals at the Voscone-type outcrop, and their textural characteristics were investigated at different magnifications through image analysis techniques. According to clast densities, morphologies and vesicle textures pumice clasts were classified into microvesicular (heterogeneous vesicles), tube (elongated/deformed vesicles) and expanded (coalesced/ inflated vesicles). The combination of density data and textural investigations allowed us to characterize both representative areas and textural extremes of pumice products. Bulk vesicularity spans a broad interval varying from 0.46 to >0.90, with vesicle number density ranging from 107-108 cm-3. The degree of vesicle coalescence is high for all pumice types, with interconnected vesicles generally representing more than 90% of the bulk vesicle population. The results show a high degree of heterogeneous textures among pumice clasts from both phases of the eruption and within each eruption phase, the different pumice types and also within each single pumice type fragment. The origin of pumice clasts with different textural characteristics is ascribed to the development of conduit regions marked by different rheological behavior. The conclusions of this study are that vesicle deformation, degree of coalescence and intense shear at the conduit walls play a major role on the degassing process, hence affecting the entire conduit dynamics.
2003
Coalescence; Conduit; Phlegrean fields; Plinian eruption; Reticulite; Tube pumice; Vesiculation; Geochemistry and Petrology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/261073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 108
social impact