In this paper we investigate a dynamic consensus problem for an open multi-agent system. Open multi-agent systems are characterized by a time-varying set of agents connected by a network: agents may leave and new agents may join the network at any time, thus the term 'open'. The dynamic consensus problem consists in achieving agreement about the time-varying average of a set of reference signals that are assumed to be the agents' inputs. Dynamic consensus has recently found application in the context of distributed estimation for electric demand-side management, where a large population of connected domestic appliances needs to estimate its future average power consumption. Since the considered network of devices changes as new appliances log in and out, there is a need to develop and characterize dynamic consensus algorithms for these open scenarios. In this paper we give several initial contributions both to a general theory of open multi-agent systems and to the specific problem of dynamic consensus within this context. On the theoretical side, we propose a formal definition of open multi-agent system, a suitable notion of stability, and some sufficient conditions to establish it. On the applied side, we design a novel dynamic consensus algorithm, the Open Proportional Dynamic Consensus algorithm. We characterize some of its convergence properties in the proposed open-multi-agent systems framework and we illustrate its evolution by numerical simulations.
Proportional Dynamic Consensus in Open Multi-Agent Systems
Franceschelli, Mauro
Primo
;FRASCA, PAOLOSecondo
2018-01-01
Abstract
In this paper we investigate a dynamic consensus problem for an open multi-agent system. Open multi-agent systems are characterized by a time-varying set of agents connected by a network: agents may leave and new agents may join the network at any time, thus the term 'open'. The dynamic consensus problem consists in achieving agreement about the time-varying average of a set of reference signals that are assumed to be the agents' inputs. Dynamic consensus has recently found application in the context of distributed estimation for electric demand-side management, where a large population of connected domestic appliances needs to estimate its future average power consumption. Since the considered network of devices changes as new appliances log in and out, there is a need to develop and characterize dynamic consensus algorithms for these open scenarios. In this paper we give several initial contributions both to a general theory of open multi-agent systems and to the specific problem of dynamic consensus within this context. On the theoretical side, we propose a formal definition of open multi-agent system, a suitable notion of stability, and some sufficient conditions to establish it. On the applied side, we design a novel dynamic consensus algorithm, the Open Proportional Dynamic Consensus algorithm. We characterize some of its convergence properties in the proposed open-multi-agent systems framework and we illustrate its evolution by numerical simulations.File | Dimensione | Formato | |
---|---|---|---|
Proportional Dynamic Consensus in Open Multi-Agent Systems.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
versione pre-print
Dimensione
749.52 kB
Formato
Adobe PDF
|
749.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.