X-ray phase imaging has the potential to dramatically improve soft tissue contrast sensitivity, which is a crucial requirement in many diagnostic applications such as breast imaging. In this context, a program devoted to perform in vivo phase-contrast synchrotron radiation breast computed tomography is ongoing at the Elettra facility (Trieste, Italy). The used phase-contrast technique is the propagation-based configuration, which requires a spatially coherent source and a sufficient object-to-detector distance. In this work the effect of this distance on image quality is quantitatively investigated scanning a large breast surgical specimen at three object-to-detector distances (1.6, 3, 9 m) and comparing the images both before and after applying the phase-retrieval procedure. The sample is imaged at 30 keV with a pixel pitch CdTe single-photon-counting detector, positioned at a fixed distance of 31.6 m from the source. The detector fluence is kept constant for all acquisitions. The study shows that, at the largest distance, a 20-fold SNR increase can be obtained by applying the phase-retrieval procedure. Moreover, it is shown that, for phase-retrieved images, changing the object-to-detector distance does not affect spatial resolution while boosting SNR (four-fold increase going from the shortest to the largest distance). The experimental results are supported by a theoretical model proposed by other authors, whose salient results are presented in this paper.

Phase-contrast breast CT: The effect of propagation distance

Golosio, Bruno;
2018-01-01

Abstract

X-ray phase imaging has the potential to dramatically improve soft tissue contrast sensitivity, which is a crucial requirement in many diagnostic applications such as breast imaging. In this context, a program devoted to perform in vivo phase-contrast synchrotron radiation breast computed tomography is ongoing at the Elettra facility (Trieste, Italy). The used phase-contrast technique is the propagation-based configuration, which requires a spatially coherent source and a sufficient object-to-detector distance. In this work the effect of this distance on image quality is quantitatively investigated scanning a large breast surgical specimen at three object-to-detector distances (1.6, 3, 9 m) and comparing the images both before and after applying the phase-retrieval procedure. The sample is imaged at 30 keV with a pixel pitch CdTe single-photon-counting detector, positioned at a fixed distance of 31.6 m from the source. The detector fluence is kept constant for all acquisitions. The study shows that, at the largest distance, a 20-fold SNR increase can be obtained by applying the phase-retrieval procedure. Moreover, it is shown that, for phase-retrieved images, changing the object-to-detector distance does not affect spatial resolution while boosting SNR (four-fold increase going from the shortest to the largest distance). The experimental results are supported by a theoretical model proposed by other authors, whose salient results are presented in this paper.
2018
Radiological and ultrasound technology; Radiology, nuclear medicine and imaging
File in questo prodotto:
File Dimensione Formato  
Brombal_2018_Phys._Med._Biol._63_24NT03.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 3.82 MB
Formato Adobe PDF
3.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/263140
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
social impact