Background: Schizophrenia is a severe psychiatric disorder with a complex pathophysiology. Given its prevalence, high risk of mortality, early onset, and high levels of disability, researchers have attempted to develop early detection strategies for facilitating timely pharmacological and/or nonpharmacological interventions. Here, we performed a meta-analysis of publicly available gene expression datasets in peripheral tissues in schizophrenia and healthy controls to detect consistent patterns of illness-associated gene expression. We also tested whether our earlier finding of a downregulation of NPTX2 expression in the brain of schizophrenia patients replicated in peripheral tissues. Methods: We conducted a systematic search in the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/gds/) and identified 3 datasets matching our inclusion criteria: GSE62333, GSE18312, and GSE27383. After quality controls, the total sample size was: schizophrenia (n = 71) and healthy controls (n = 57) (schizophrenia range: n = 12-40; healthy controls range: n = 8-29). Results: The results of the meta-analysis conducted with the GeneMeta package revealed 2 genes with a false discovery rate < 0.05: atlastin GTPase 3 (ATL3) (upregulated) and arachidonate 15-lipoxygenase, type B (ALOX15B) (downregulated). The result for ATL3 was confirmed using the weighted Z test method, whereas we found a suggestive signal for ALOX15B (false discovery rate < 0.10). Conclusions: These data point to alterations of peripheral expression of ATL3 in schizophrenia, but did not confirm the significant association signal found for NPTX2 in postmortem brain samples. These findings await replication in newly recruited schizophrenia samples as well as complementary analysis of their encoded peptides in blood.

Peripheral Biomarkers in Schizophrenia: A Meta-Analysis of Microarray Gene Expression Datasets

Manchia, Mirko
Co-primo
Writing – Original Draft Preparation
;
Pinna, Federica
Writing – Review & Editing
;
Carpiniello, Bernardo
Ultimo
Supervision
2019-01-01

Abstract

Background: Schizophrenia is a severe psychiatric disorder with a complex pathophysiology. Given its prevalence, high risk of mortality, early onset, and high levels of disability, researchers have attempted to develop early detection strategies for facilitating timely pharmacological and/or nonpharmacological interventions. Here, we performed a meta-analysis of publicly available gene expression datasets in peripheral tissues in schizophrenia and healthy controls to detect consistent patterns of illness-associated gene expression. We also tested whether our earlier finding of a downregulation of NPTX2 expression in the brain of schizophrenia patients replicated in peripheral tissues. Methods: We conducted a systematic search in the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/gds/) and identified 3 datasets matching our inclusion criteria: GSE62333, GSE18312, and GSE27383. After quality controls, the total sample size was: schizophrenia (n = 71) and healthy controls (n = 57) (schizophrenia range: n = 12-40; healthy controls range: n = 8-29). Results: The results of the meta-analysis conducted with the GeneMeta package revealed 2 genes with a false discovery rate < 0.05: atlastin GTPase 3 (ATL3) (upregulated) and arachidonate 15-lipoxygenase, type B (ALOX15B) (downregulated). The result for ATL3 was confirmed using the weighted Z test method, whereas we found a suggestive signal for ALOX15B (false discovery rate < 0.10). Conclusions: These data point to alterations of peripheral expression of ATL3 in schizophrenia, but did not confirm the significant association signal found for NPTX2 in postmortem brain samples. These findings await replication in newly recruited schizophrenia samples as well as complementary analysis of their encoded peptides in blood.
2019
biomarker; biostatistics; meta-analysis; pathway analysis; psychosis; transcriptomics;
biomarker; biostatistics; meta-analysis; pathway analysis; psychosis; transcriptomics; Pharmacology; Psychiatry and Mental Health; Pharmacology (medical)
File in questo prodotto:
File Dimensione Formato  
Piras_2019.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione post-print (AAM)
Dimensione 167.07 kB
Formato Adobe PDF
167.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/263856
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact