Various types of rifampicin (RIF)-loaded microparticles were compared for their stability during nebulization. Poly(lactide-co-glycolide) (PLGA), chitosan (CHT) and PLGA/CHT microparticles (MPs) were prepared by emulsion, precipitation or spray-drying techniques. MPs ability to be nebulized (NE%) as well as stability during freeze-drying or/and nebulization (NEED%), were evaluated after RIF extraction from MPs and determination by light spectroscopy. MP mean diameters and zeta-potential values were measured by dynamic light scattering, morphology was assessed by SEM, cytotoxicity by MTT method and mucoadhesive properties by mucin association. In all cases, freeze-drying prior to nebulization did not affect EE%, NE or NEED%. In CHT, MPs RIF encapsulation efficiency (EE%) decreased with increasing CHT concentration (viscosity) and CHT-MP NEED% was higher when the polymer was crosslinked by glutaraldehyde. PLGA MPs, exhibited both higher RIF EE% and also higher nebulization ability and NEED%, compared to CHT ones, but also higher cytotoxicity. However, when the two polymers were combined in the PLGA/CHT MPs, EE%, NE% and NEED% increased with increasing MP CHT-content. PLGA/CHT MPs with 0.50% or 0.75% CHT exhibited highest EE% for RIF and also best nebulization ability and stability, compared to all other MP formulations studied. Additionally they had good mucoadhesive properties and comparably low cytotoxicity.

Chitosan and PLGA microspheres as drug delivery system against pulmonary mycobacteria infections

MANCA, MARIA LETIZIA
2007-02-28

Abstract

Various types of rifampicin (RIF)-loaded microparticles were compared for their stability during nebulization. Poly(lactide-co-glycolide) (PLGA), chitosan (CHT) and PLGA/CHT microparticles (MPs) were prepared by emulsion, precipitation or spray-drying techniques. MPs ability to be nebulized (NE%) as well as stability during freeze-drying or/and nebulization (NEED%), were evaluated after RIF extraction from MPs and determination by light spectroscopy. MP mean diameters and zeta-potential values were measured by dynamic light scattering, morphology was assessed by SEM, cytotoxicity by MTT method and mucoadhesive properties by mucin association. In all cases, freeze-drying prior to nebulization did not affect EE%, NE or NEED%. In CHT, MPs RIF encapsulation efficiency (EE%) decreased with increasing CHT concentration (viscosity) and CHT-MP NEED% was higher when the polymer was crosslinked by glutaraldehyde. PLGA MPs, exhibited both higher RIF EE% and also higher nebulization ability and NEED%, compared to CHT ones, but also higher cytotoxicity. However, when the two polymers were combined in the PLGA/CHT MPs, EE%, NE% and NEED% increased with increasing MP CHT-content. PLGA/CHT MPs with 0.50% or 0.75% CHT exhibited highest EE% for RIF and also best nebulization ability and stability, compared to all other MP formulations studied. Additionally they had good mucoadhesive properties and comparably low cytotoxicity.
28-feb-2007
Chitosan
Cytotoxicity
Encapsulation; Stability
Microparticle
Mucoadhesion
Nebulization
PLGA
Rifampicin
File in questo prodotto:
File Dimensione Formato  
manca_maria_letizia.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/265866
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact