Written work here was undertaken in order to investigate geothermal reservoirs associated with major faults, located in Caldes de Montbui, Spain, and Sardara, Sardinia. This thesis has two independent parts. The first is a theoretical profile of geophysical methods applied in this work. The second focuses on the development of a methodology for cross-validation between the electromagnetic model (EM), densities models, and models of resistivity. The development and application of this methodology were in two hydrothermal environments. To improve the knowledge of the structural context of thermal aquifers, different complementary techniques, audio magnetotelluric measures (AMT), Time Domain Electromagnetic (TDEM), Tomography of the electrical resistivity (ERT) and Gravimetry, were made around the two areas of applications. The important physical parameter identified by MT methods is the electrical resistivity, which is particularly sensitive to the presence and the mineralization of the water. The three-dimensional modeling of the data allowed us to define the depth and the extent of hydrothermal levels. Despite some limitations, the MT method has proved well suited to study geothermal sites. There are several geophysical methods that have become industry standards, but they should not be used in isolation. However, the resistivity method is very useful, because it is directly related to the characteristics of geothermal reservoirs. In addition, because of the terrain of most geothermal areas and the profound nature of the reservoir, the TDEM combined with MT resistivity methods are becoming the methods of choice for geothermal exploration.

Modelisation des aquiferes thermaux avec des methodes geophysiques integrees

BELGHAZAL, HAJAR
2012-03-06

Abstract

Written work here was undertaken in order to investigate geothermal reservoirs associated with major faults, located in Caldes de Montbui, Spain, and Sardara, Sardinia. This thesis has two independent parts. The first is a theoretical profile of geophysical methods applied in this work. The second focuses on the development of a methodology for cross-validation between the electromagnetic model (EM), densities models, and models of resistivity. The development and application of this methodology were in two hydrothermal environments. To improve the knowledge of the structural context of thermal aquifers, different complementary techniques, audio magnetotelluric measures (AMT), Time Domain Electromagnetic (TDEM), Tomography of the electrical resistivity (ERT) and Gravimetry, were made around the two areas of applications. The important physical parameter identified by MT methods is the electrical resistivity, which is particularly sensitive to the presence and the mineralization of the water. The three-dimensional modeling of the data allowed us to define the depth and the extent of hydrothermal levels. Despite some limitations, the MT method has proved well suited to study geothermal sites. There are several geophysical methods that have become industry standards, but they should not be used in isolation. However, the resistivity method is very useful, because it is directly related to the characteristics of geothermal reservoirs. In addition, because of the terrain of most geothermal areas and the profound nature of the reservoir, the TDEM combined with MT resistivity methods are becoming the methods of choice for geothermal exploration.
6-mar-2012
AMT
Audio magnetotelluric
Geothermic
Structure
TDEM
TRI
Time Domain Electromagnetic
Tomography of the electrical resistivity
geotermia
gravimetria
gravimetry
hydrothermal systems
modeling
sistemi idrotermali
File in questo prodotto:
File Dimensione Formato  
Hajar.Belghazal_PHD_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 6.54 MB
Formato Adobe PDF
6.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/266084
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact