In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the �first part, several solutions to the consensus problem based on gossip under different sets of assumptions are proposed. In the fi�rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of different size. In the second case, under the same discretization assumptions of the �rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem.

Consensus Algorithms for Estimation and Discrete Averaging in Networked Control Systems

FRANCESCHELLI, MAURO
2011-03-02

Abstract

In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the �first part, several solutions to the consensus problem based on gossip under different sets of assumptions are proposed. In the fi�rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of different size. In the second case, under the same discretization assumptions of the �rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem.
2-mar-2011
Consensus
Gossip
Multi-agent System
File in questo prodotto:
File Dimensione Formato  
PhD_Mauro_Franceschelli.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/266297
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact